dioxus_core/properties.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
use std::{any::TypeId, fmt::Arguments};
use crate::innerlude::*;
/// Every "Props" used for a component must implement the `Properties` trait. This trait gives some hints to Dioxus
/// on how to memoize the props and some additional optimizations that can be made. We strongly encourage using the
/// derive macro to implement the `Properties` trait automatically.
///
/// Dioxus requires your props to be 'static, `Clone`, and `PartialEq`. We use the `PartialEq` trait to determine if
/// the props have changed when we diff the component.
///
/// ## Example
///
/// ```rust
/// # use dioxus::prelude::*;
/// #[derive(Props, PartialEq, Clone)]
/// struct MyComponentProps {
/// data: String
/// }
///
/// fn MyComponent(props: MyComponentProps) -> Element {
/// rsx! {
/// div { "Hello {props.data}" }
/// }
/// }
/// ```
///
/// Or even better, derive your entire props struct with the [`#[crate::component]`] macro:
///
/// ```rust
/// # use dioxus::prelude::*;
/// #[component]
/// fn MyComponent(data: String) -> Element {
/// rsx! {
/// div { "Hello {data}" }
/// }
/// }
/// ```
#[rustversion::attr(
since(1.78.0),
diagnostic::on_unimplemented(
message = "`Props` is not implemented for `{Self}`",
label = "Props",
note = "Props is a trait that is automatically implemented for all structs that can be used as props for a component",
note = "If you manually created a new properties struct, you may have forgotten to add `#[derive(Props, PartialEq, Clone)]` to your struct",
)
)]
pub trait Properties: Clone + Sized + 'static {
/// The type of the builder for this component.
/// Used to create "in-progress" versions of the props.
type Builder;
/// Create a builder for this component.
fn builder() -> Self::Builder;
/// Make the old props equal to the new props. Return if the props were equal and should be memoized.
fn memoize(&mut self, other: &Self) -> bool;
/// Create a component from the props.
fn into_vcomponent<M: 'static>(self, render_fn: impl ComponentFunction<Self, M>) -> VComponent {
let type_name = std::any::type_name_of_val(&render_fn);
VComponent::new(render_fn, self, type_name)
}
}
impl Properties for () {
type Builder = EmptyBuilder;
fn builder() -> Self::Builder {
EmptyBuilder {}
}
fn memoize(&mut self, _other: &Self) -> bool {
true
}
}
/// Root properties never need to be memoized, so we can use a dummy implementation.
pub(crate) struct RootProps<P>(pub P);
impl<P> Clone for RootProps<P>
where
P: Clone,
{
fn clone(&self) -> Self {
Self(self.0.clone())
}
}
impl<P> Properties for RootProps<P>
where
P: Clone + 'static,
{
type Builder = P;
fn builder() -> Self::Builder {
unreachable!("Root props technically are never built")
}
fn memoize(&mut self, _other: &Self) -> bool {
true
}
}
// We allow components to use the () generic parameter if they have no props. This impl enables the "build" method
// that the macros use to anonymously complete prop construction.
pub struct EmptyBuilder;
impl EmptyBuilder {
pub fn build(self) {}
}
/// This utility function launches the builder method so that the rsx! macro can use the typed-builder pattern
/// to initialize a component's props.
pub fn fc_to_builder<P, M>(_: impl ComponentFunction<P, M>) -> <P as Properties>::Builder
where
P: Properties,
{
P::builder()
}
/// A warning that will trigger if a component is called as a function
#[warnings::warning]
pub(crate) fn component_called_as_function<C: ComponentFunction<P, M>, P, M>(_: C) {
// We trim WithOwner from the end of the type name for component with a builder that include a special owner which may not match the function name directly
let type_name = std::any::type_name::<C>();
let component_name = Runtime::with(|rt| {
current_scope_id()
.ok()
.and_then(|id| rt.get_state(id).map(|scope| scope.name))
})
.ok()
.flatten();
// If we are in a component, and the type name is the same as the active component name, then we can just return
if component_name == Some(type_name) {
return;
}
// Otherwise the component was called like a function, so we should log an error
tracing::error!("It looks like you called the component {type_name} like a function instead of a component. Components should be called with braces like `{type_name} {{ prop: value }}` instead of as a function");
}
/// Make sure that this component is currently running as a component, not a function call
#[doc(hidden)]
#[allow(clippy::no_effect)]
pub fn verify_component_called_as_component<C: ComponentFunction<P, M>, P, M>(component: C) {
component_called_as_function(component);
}
/// Any component that implements the `ComponentFn` trait can be used as a component.
///
/// This trait is automatically implemented for functions that are in one of the following forms:
/// - `fn() -> Element`
/// - `fn(props: Properties) -> Element`
///
/// You can derive it automatically for any function with arguments that implement PartialEq with the `#[component]` attribute:
/// ```rust
/// # use dioxus::prelude::*;
/// #[component]
/// fn MyComponent(a: u32, b: u32) -> Element {
/// rsx! { "a: {a}, b: {b}" }
/// }
/// ```
#[rustversion::attr(
since(1.78.0),
diagnostic::on_unimplemented(
message = "`Component<{Props}>` is not implemented for `{Self}`",
label = "Component",
note = "Components are functions in the form `fn() -> Element`, `fn(props: Properties) -> Element`, or `#[component] fn(partial_eq1: u32, partial_eq2: u32) -> Element`.",
note = "You may have forgotten to add `#[component]` to your function to automatically implement the `ComponentFunction` trait."
)
)]
pub trait ComponentFunction<Props, Marker = ()>: Clone + 'static {
/// Get the type id of the component.
fn id(&self) -> TypeId {
TypeId::of::<Self>()
}
/// Convert the component to a function that takes props and returns an element.
fn rebuild(&self, props: Props) -> Element;
}
/// Accept any callbacks that take props
impl<F: Fn(P) -> Element + Clone + 'static, P> ComponentFunction<P> for F {
fn rebuild(&self, props: P) -> Element {
self(props)
}
}
/// Accept any callbacks that take no props
pub struct EmptyMarker;
impl<F: Fn() -> Element + Clone + 'static> ComponentFunction<(), EmptyMarker> for F {
fn rebuild(&self, _: ()) -> Element {
self()
}
}
/// A enhanced version of the `Into` trait that allows with more flexibility.
pub trait SuperInto<O, M = ()> {
/// Convert from a type to another type.
fn super_into(self) -> O;
}
impl<T, O, M> SuperInto<O, M> for T
where
O: SuperFrom<T, M>,
{
fn super_into(self) -> O {
O::super_from(self)
}
}
/// A enhanced version of the `From` trait that allows with more flexibility.
pub trait SuperFrom<T, M = ()> {
/// Convert from a type to another type.
fn super_from(_: T) -> Self;
}
// first implement for all types that are that implement the From trait
impl<T, O> SuperFrom<T, ()> for O
where
O: From<T>,
{
fn super_from(input: T) -> Self {
Self::from(input)
}
}
#[doc(hidden)]
pub struct OptionStringFromMarker;
impl<'a> SuperFrom<&'a str, OptionStringFromMarker> for Option<String> {
fn super_from(input: &'a str) -> Self {
Some(String::from(input))
}
}
#[doc(hidden)]
pub struct OptionArgumentsFromMarker;
impl<'a> SuperFrom<Arguments<'a>, OptionArgumentsFromMarker> for Option<String> {
fn super_from(input: Arguments<'a>) -> Self {
Some(input.to_string())
}
}
#[doc(hidden)]
pub struct OptionCallbackMarker<T>(std::marker::PhantomData<T>);
// Closure can be created from FnMut -> async { anything } or FnMut -> Ret
impl<
Function: FnMut(Args) -> Spawn + 'static,
Args: 'static,
Spawn: SpawnIfAsync<Marker, Ret> + 'static,
Ret: 'static,
Marker,
> SuperFrom<Function, OptionCallbackMarker<Marker>> for Option<Callback<Args, Ret>>
{
fn super_from(input: Function) -> Self {
Some(Callback::new(input))
}
}
#[test]
#[allow(unused)]
fn optional_callback_compiles() {
fn compiles() {
// Converting from closures (without type hints in the closure works)
let callback: Callback<i32, i32> = (|num| num * num).super_into();
let callback: Callback<i32, ()> = (|num| async move { println!("{num}") }).super_into();
// Converting from closures to optional callbacks works
let optional: Option<Callback<i32, i32>> = (|num| num * num).super_into();
let optional: Option<Callback<i32, ()>> =
(|num| async move { println!("{num}") }).super_into();
}
}
#[test]
#[allow(unused)]
fn from_props_compiles() {
// T -> T works
let option: i32 = 0i32.super_into();
let option: i32 = 0.super_into(); // Note we don't need type hints on all inputs
let option: i128 = 0.super_into();
let option: &'static str = "hello world".super_into();
// // T -> From<T> works
let option: i64 = 0i32.super_into();
let option: String = "hello world".super_into();
// T -> Option works
let option: Option<i32> = 0i32.super_into();
let option: Option<i32> = 0.super_into();
let option: Option<i128> = 0.super_into();
fn takes_option_string<M>(_: impl SuperInto<Option<String>, M>) {}
takes_option_string("hello world");
takes_option_string("hello world".to_string());
}