dioxus_core/
properties.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
use std::{any::TypeId, fmt::Arguments};

use crate::innerlude::*;

/// Every "Props" used for a component must implement the `Properties` trait. This trait gives some hints to Dioxus
/// on how to memoize the props and some additional optimizations that can be made. We strongly encourage using the
/// derive macro to implement the `Properties` trait automatically.
///
/// Dioxus requires your props to be 'static, `Clone`, and `PartialEq`. We use the `PartialEq` trait to determine if
/// the props have changed when we diff the component.
///
/// ## Example
///
/// ```rust
/// # use dioxus::prelude::*;
/// #[derive(Props, PartialEq, Clone)]
/// struct MyComponentProps {
///     data: String
/// }
///
/// fn MyComponent(props: MyComponentProps) -> Element {
///     rsx! {
///         div { "Hello {props.data}" }
///     }
/// }
/// ```
///
/// Or even better, derive your entire props struct with the [`#[crate::component]`] macro:
///
/// ```rust
/// # use dioxus::prelude::*;
/// #[component]
/// fn MyComponent(data: String) -> Element {
///     rsx! {
///         div { "Hello {data}" }
///     }
/// }
/// ```
#[rustversion::attr(
    since(1.78.0),
    diagnostic::on_unimplemented(
        message = "`Props` is not implemented for `{Self}`",
        label = "Props",
        note = "Props is a trait that is automatically implemented for all structs that can be used as props for a component",
        note = "If you manually created a new properties struct, you may have forgotten to add `#[derive(Props, PartialEq, Clone)]` to your struct",
    )
)]
pub trait Properties: Clone + Sized + 'static {
    /// The type of the builder for this component.
    /// Used to create "in-progress" versions of the props.
    type Builder;

    /// Create a builder for this component.
    fn builder() -> Self::Builder;

    /// Make the old props equal to the new props. Return if the props were equal and should be memoized.
    fn memoize(&mut self, other: &Self) -> bool;

    /// Create a component from the props.
    fn into_vcomponent<M: 'static>(self, render_fn: impl ComponentFunction<Self, M>) -> VComponent {
        let type_name = std::any::type_name_of_val(&render_fn);
        VComponent::new(render_fn, self, type_name)
    }
}

impl Properties for () {
    type Builder = EmptyBuilder;
    fn builder() -> Self::Builder {
        EmptyBuilder {}
    }
    fn memoize(&mut self, _other: &Self) -> bool {
        true
    }
}

/// Root properties never need to be memoized, so we can use a dummy implementation.
pub(crate) struct RootProps<P>(pub P);

impl<P> Clone for RootProps<P>
where
    P: Clone,
{
    fn clone(&self) -> Self {
        Self(self.0.clone())
    }
}

impl<P> Properties for RootProps<P>
where
    P: Clone + 'static,
{
    type Builder = P;
    fn builder() -> Self::Builder {
        unreachable!("Root props technically are never built")
    }
    fn memoize(&mut self, _other: &Self) -> bool {
        true
    }
}

// We allow components to use the () generic parameter if they have no props. This impl enables the "build" method
// that the macros use to anonymously complete prop construction.
pub struct EmptyBuilder;
impl EmptyBuilder {
    pub fn build(self) {}
}

/// This utility function launches the builder method so that the rsx! macro can use the typed-builder pattern
/// to initialize a component's props.
pub fn fc_to_builder<P, M>(_: impl ComponentFunction<P, M>) -> <P as Properties>::Builder
where
    P: Properties,
{
    P::builder()
}

/// A warning that will trigger if a component is called as a function
#[warnings::warning]
pub(crate) fn component_called_as_function<C: ComponentFunction<P, M>, P, M>(_: C) {
    // We trim WithOwner from the end of the type name for component with a builder that include a special owner which may not match the function name directly
    let type_name = std::any::type_name::<C>();
    let component_name = Runtime::with(|rt| {
        current_scope_id()
            .ok()
            .and_then(|id| rt.get_state(id).map(|scope| scope.name))
    })
    .ok()
    .flatten();

    // If we are in a component, and the type name is the same as the active component name, then we can just return
    if component_name == Some(type_name) {
        return;
    }

    // Otherwise the component was called like a function, so we should log an error
    tracing::error!("It looks like you called the component {type_name} like a function instead of a component. Components should be called with braces like `{type_name} {{ prop: value }}` instead of as a function");
}

/// Make sure that this component is currently running as a component, not a function call
#[doc(hidden)]
#[allow(clippy::no_effect)]
pub fn verify_component_called_as_component<C: ComponentFunction<P, M>, P, M>(component: C) {
    component_called_as_function(component);
}

/// Any component that implements the `ComponentFn` trait can be used as a component.
///
/// This trait is automatically implemented for functions that are in one of the following forms:
/// - `fn() -> Element`
/// - `fn(props: Properties) -> Element`
///
/// You can derive it automatically for any function with arguments that implement PartialEq with the `#[component]` attribute:
/// ```rust
/// # use dioxus::prelude::*;
/// #[component]
/// fn MyComponent(a: u32, b: u32) -> Element {
///     rsx! { "a: {a}, b: {b}" }
/// }
/// ```
#[rustversion::attr(
    since(1.78.0),
    diagnostic::on_unimplemented(
        message = "`Component<{Props}>` is not implemented for `{Self}`",
        label = "Component",
        note = "Components are functions in the form `fn() -> Element`, `fn(props: Properties) -> Element`, or `#[component] fn(partial_eq1: u32, partial_eq2: u32) -> Element`.",
        note = "You may have forgotten to add `#[component]` to your function to automatically implement the `ComponentFunction` trait."
    )
)]
pub trait ComponentFunction<Props, Marker = ()>: Clone + 'static {
    /// Get the type id of the component.
    fn id(&self) -> TypeId {
        TypeId::of::<Self>()
    }

    /// Convert the component to a function that takes props and returns an element.
    fn rebuild(&self, props: Props) -> Element;
}

/// Accept any callbacks that take props
impl<F: Fn(P) -> Element + Clone + 'static, P> ComponentFunction<P> for F {
    fn rebuild(&self, props: P) -> Element {
        self(props)
    }
}

/// Accept any callbacks that take no props
pub struct EmptyMarker;
impl<F: Fn() -> Element + Clone + 'static> ComponentFunction<(), EmptyMarker> for F {
    fn rebuild(&self, _: ()) -> Element {
        self()
    }
}

/// A enhanced version of the `Into` trait that allows with more flexibility.
pub trait SuperInto<O, M = ()> {
    /// Convert from a type to another type.
    fn super_into(self) -> O;
}

impl<T, O, M> SuperInto<O, M> for T
where
    O: SuperFrom<T, M>,
{
    fn super_into(self) -> O {
        O::super_from(self)
    }
}

/// A enhanced version of the `From` trait that allows with more flexibility.
pub trait SuperFrom<T, M = ()> {
    /// Convert from a type to another type.
    fn super_from(_: T) -> Self;
}

// first implement for all types that are that implement the From trait
impl<T, O> SuperFrom<T, ()> for O
where
    O: From<T>,
{
    fn super_from(input: T) -> Self {
        Self::from(input)
    }
}

#[doc(hidden)]
pub struct OptionStringFromMarker;

impl<'a> SuperFrom<&'a str, OptionStringFromMarker> for Option<String> {
    fn super_from(input: &'a str) -> Self {
        Some(String::from(input))
    }
}

#[doc(hidden)]
pub struct OptionArgumentsFromMarker;

impl<'a> SuperFrom<Arguments<'a>, OptionArgumentsFromMarker> for Option<String> {
    fn super_from(input: Arguments<'a>) -> Self {
        Some(input.to_string())
    }
}

#[doc(hidden)]
pub struct OptionCallbackMarker<T>(std::marker::PhantomData<T>);

// Closure can be created from FnMut -> async { anything } or FnMut -> Ret
impl<
        Function: FnMut(Args) -> Spawn + 'static,
        Args: 'static,
        Spawn: SpawnIfAsync<Marker, Ret> + 'static,
        Ret: 'static,
        Marker,
    > SuperFrom<Function, OptionCallbackMarker<Marker>> for Option<Callback<Args, Ret>>
{
    fn super_from(input: Function) -> Self {
        Some(Callback::new(input))
    }
}

#[test]
#[allow(unused)]
fn optional_callback_compiles() {
    fn compiles() {
        // Converting from closures (without type hints in the closure works)
        let callback: Callback<i32, i32> = (|num| num * num).super_into();
        let callback: Callback<i32, ()> = (|num| async move { println!("{num}") }).super_into();

        // Converting from closures to optional callbacks works
        let optional: Option<Callback<i32, i32>> = (|num| num * num).super_into();
        let optional: Option<Callback<i32, ()>> =
            (|num| async move { println!("{num}") }).super_into();
    }
}

#[test]
#[allow(unused)]
fn from_props_compiles() {
    // T -> T works
    let option: i32 = 0i32.super_into();
    let option: i32 = 0.super_into(); // Note we don't need type hints on all inputs
    let option: i128 = 0.super_into();
    let option: &'static str = "hello world".super_into();

    // // T -> From<T> works
    let option: i64 = 0i32.super_into();
    let option: String = "hello world".super_into();

    // T -> Option works
    let option: Option<i32> = 0i32.super_into();
    let option: Option<i32> = 0.super_into();
    let option: Option<i128> = 0.super_into();
    fn takes_option_string<M>(_: impl SuperInto<Option<String>, M>) {}
    takes_option_string("hello world");
    takes_option_string("hello world".to_string());
}