dioxus_native_core/
real_dom.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
//! A Dom that can sync with the VirtualDom mutations intended for use in lazy renderers.

use rustc_hash::{FxHashMap, FxHashSet};
use shipyard::error::GetStorage;
use shipyard::track::Untracked;
use shipyard::{Component, Get, IntoBorrow, ScheduledWorkload, Unique, View, ViewMut, Workload};
use shipyard::{SystemModificator, World};
use std::any::TypeId;
use std::collections::VecDeque;
use std::ops::{Deref, DerefMut};
use std::sync::{Arc, RwLock};

use crate::custom_element::{
    CustomElement, CustomElementFactory, CustomElementManager, CustomElementRegistry,
    CustomElementUpdater,
};
use crate::node::{
    ElementNode, FromAnyValue, NodeType, OwnedAttributeDiscription, OwnedAttributeValue, TextNode,
};
use crate::node_ref::{NodeMask, NodeMaskBuilder};
use crate::node_watcher::{AttributeWatcher, NodeWatcher};
use crate::passes::{Dependant, DirtyNodeStates, PassDirection, TypeErasedState};
use crate::prelude::AttributeMaskBuilder;
use crate::tree::{TreeMut, TreeMutView, TreeRef, TreeRefView};
use crate::NodeId;
use crate::{FxDashSet, SendAnyMap};

/// The context passes can receive when they are executed
#[derive(Unique)]
pub(crate) struct SendAnyMapWrapper(SendAnyMap);

impl Deref for SendAnyMapWrapper {
    type Target = SendAnyMap;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

/// The nodes that were changed when updating the state of the RealDom
#[derive(Unique, Default)]
pub(crate) struct DirtyNodesResult(FxDashSet<NodeId>);

impl Deref for DirtyNodesResult {
    type Target = FxDashSet<NodeId>;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

/// The nodes that have been marked as dirty in the RealDom
pub(crate) struct NodesDirty<V: FromAnyValue + Send + Sync> {
    passes_updated: FxHashMap<NodeId, FxHashSet<TypeId>>,
    nodes_updated: FxHashMap<NodeId, NodeMask>,
    nodes_created: FxHashSet<NodeId>,
    pub(crate) passes: Box<[TypeErasedState<V>]>,
}

impl<V: FromAnyValue + Send + Sync> NodesDirty<V> {
    /// Mark a node as dirty
    fn mark_dirty(&mut self, node_id: NodeId, mask: NodeMask) {
        self.passes_updated.entry(node_id).or_default().extend(
            self.passes
                .iter()
                .filter_map(|x| x.mask.overlaps(&mask).then_some(x.this_type_id)),
        );
        let nodes_updated = &mut self.nodes_updated;
        if let Some(node) = nodes_updated.get_mut(&node_id) {
            *node = node.union(&mask);
        } else {
            nodes_updated.insert(node_id, mask);
        }
    }

    /// Mark a node that has had a parent changed
    fn mark_parent_added_or_removed(&mut self, node_id: NodeId) {
        let hm = self.passes_updated.entry(node_id).or_default();
        for pass in &*self.passes {
            // If any of the states in this node depend on the parent then mark them as dirty
            for &pass in &pass.parent_dependancies_ids {
                hm.insert(pass);
            }
        }
    }

    /// Mark a node as having a child added or removed
    fn mark_child_changed(&mut self, node_id: NodeId) {
        let hm = self.passes_updated.entry(node_id).or_default();
        for pass in &*self.passes {
            // If any of the states in this node depend on the children then mark them as dirty
            for &pass in &pass.child_dependancies_ids {
                hm.insert(pass);
            }
        }
    }
}

type NodeWatchers<V> = Arc<RwLock<Vec<Box<dyn NodeWatcher<V> + Send + Sync>>>>;
type AttributeWatchers<V> = Arc<RwLock<Vec<Box<dyn AttributeWatcher<V> + Send + Sync>>>>;

/// A Dom that can sync with the VirtualDom mutations intended for use in lazy renderers.
/// The render state passes from parent to children and or accumulates state from children to parents.
/// To get started:
/// 1) Implement [crate::passes::State] for each part of your state that you want to compute incrementally
/// 2) Create a RealDom [RealDom::new], passing in each state you created
/// 3) Update the state of the RealDom by adding and modifying nodes
/// 4) Call [RealDom::update_state] to update the state of incrementally computed values on each node
///
/// # Custom attribute values
/// To allow custom values to be passed into attributes implement FromAnyValue on a type that can represent your custom value and specify the V generic to be that type. If you have many different custom values, it can be useful to use a enum type to represent the varients.
pub struct RealDom<V: FromAnyValue + Send + Sync = ()> {
    pub(crate) world: World,
    nodes_listening: FxHashMap<String, FxHashSet<NodeId>>,
    pub(crate) dirty_nodes: NodesDirty<V>,
    node_watchers: NodeWatchers<V>,
    attribute_watchers: AttributeWatchers<V>,
    workload: ScheduledWorkload,
    root_id: NodeId,
    custom_elements: Arc<RwLock<CustomElementRegistry<V>>>,
    phantom: std::marker::PhantomData<V>,
}

impl<V: FromAnyValue + Send + Sync> RealDom<V> {
    /// Create a new RealDom with the given states that will be inserted and updated when needed
    pub fn new(tracked_states: impl Into<Box<[TypeErasedState<V>]>>) -> RealDom<V> {
        let mut tracked_states = tracked_states.into();
        // resolve dependants for each pass
        for i in 1..=tracked_states.len() {
            let (before, after) = tracked_states.split_at_mut(i);
            let (current, before) = before.split_last_mut().unwrap();
            for state in before.iter_mut().chain(after.iter_mut()) {
                let dependants = Arc::get_mut(&mut state.dependants).unwrap();

                let current_dependant = Dependant {
                    type_id: current.this_type_id,
                    enter_shadow_dom: current.enter_shadow_dom,
                };

                // If this node depends on the other state as a parent, then the other state should update its children of the current type when it is invalidated
                if current
                    .parent_dependancies_ids
                    .contains(&state.this_type_id)
                    && !dependants.child.contains(&current_dependant)
                {
                    dependants.child.push(current_dependant);
                }
                // If this node depends on the other state as a child, then the other state should update its parent of the current type when it is invalidated
                if current.child_dependancies_ids.contains(&state.this_type_id)
                    && !dependants.parent.contains(&current_dependant)
                {
                    dependants.parent.push(current_dependant);
                }
                // If this node depends on the other state as a sibling, then the other state should update its siblings of the current type when it is invalidated
                if current.node_dependancies_ids.contains(&state.this_type_id)
                    && !dependants.node.contains(&current.this_type_id)
                {
                    dependants.node.push(current.this_type_id);
                }
            }
            // If the current state depends on itself, then it should update itself when it is invalidated
            let dependants = Arc::get_mut(&mut current.dependants).unwrap();
            let current_dependant = Dependant {
                type_id: current.this_type_id,
                enter_shadow_dom: current.enter_shadow_dom,
            };
            match current.pass_direction {
                PassDirection::ChildToParent => {
                    if !dependants.parent.contains(&current_dependant) {
                        dependants.parent.push(current_dependant);
                    }
                }
                PassDirection::ParentToChild => {
                    if !dependants.child.contains(&current_dependant) {
                        dependants.child.push(current_dependant);
                    }
                }
                _ => {}
            }
        }
        let workload = construct_workload(&mut tracked_states);
        let (workload, _) = workload.build().unwrap();
        let mut world = World::new();
        let root_node: NodeType<V> = NodeType::Element(ElementNode {
            tag: "Root".to_string(),
            namespace: Some("Root".to_string()),
            attributes: FxHashMap::default(),
            listeners: FxHashSet::default(),
        });
        let root_id = world.add_entity(root_node);
        {
            let mut tree: TreeMutView = world.borrow().unwrap();
            tree.create_node(root_id);
        }

        let mut passes_updated = FxHashMap::default();
        let mut nodes_updated = FxHashMap::default();

        passes_updated.insert(
            root_id,
            tracked_states.iter().map(|x| x.this_type_id).collect(),
        );
        nodes_updated.insert(root_id, NodeMaskBuilder::ALL.build());

        RealDom {
            world,
            nodes_listening: FxHashMap::default(),
            dirty_nodes: NodesDirty {
                passes_updated,
                nodes_updated,
                passes: tracked_states,
                nodes_created: [root_id].into_iter().collect(),
            },
            node_watchers: Default::default(),
            attribute_watchers: Default::default(),
            workload,
            root_id,
            custom_elements: Default::default(),
            phantom: std::marker::PhantomData,
        }
    }

    /// Get a reference to the tree.
    pub fn tree_ref(&self) -> TreeRefView {
        self.world.borrow().unwrap()
    }

    /// Get a mutable reference to the tree.
    pub fn tree_mut(&self) -> TreeMutView {
        self.world.borrow().unwrap()
    }

    /// Create a new node of the given type in the dom and return a mutable reference to it.
    pub fn create_node(&mut self, node: impl Into<NodeType<V>>) -> NodeMut<'_, V> {
        let node = node.into();
        let is_element = matches!(node, NodeType::Element(_));

        let id = self.world.add_entity(node);
        self.tree_mut().create_node(id);

        self.dirty_nodes
            .passes_updated
            .entry(id)
            .or_default()
            .extend(self.dirty_nodes.passes.iter().map(|x| x.this_type_id));
        self.dirty_nodes
            .mark_dirty(id, NodeMaskBuilder::ALL.build());
        self.dirty_nodes.nodes_created.insert(id);

        // Create a custom element if needed
        if is_element {
            let custom_elements = self.custom_elements.clone();
            custom_elements
                .read()
                .unwrap()
                .add_shadow_dom(NodeMut::new(id, self));
        }

        NodeMut::new(id, self)
    }

    /// Find all nodes that are listening for an event, sorted by there height in the dom progressing starting at the bottom and progressing up.
    /// This can be useful to avoid creating duplicate events.
    pub fn get_listening_sorted(&self, event: &str) -> Vec<NodeRef<V>> {
        if let Some(nodes) = self.nodes_listening.get(event) {
            let mut listening: Vec<_> = nodes
                .iter()
                .map(|id| (*id, self.tree_ref().height(*id).unwrap()))
                .collect();
            listening.sort_by(|(_, h1), (_, h2)| h1.cmp(h2).reverse());
            listening
                .into_iter()
                .map(|(id, _)| NodeRef { id, dom: self })
                .collect()
        } else {
            Vec::new()
        }
    }

    /// Returns the id of the root node.
    pub fn root_id(&self) -> NodeId {
        self.root_id
    }

    /// Check if a node exists in the dom.
    pub fn contains(&self, id: NodeId) -> bool {
        self.tree_ref().contains(id)
    }

    /// Get a reference to a node.
    pub fn get(&self, id: NodeId) -> Option<NodeRef<'_, V>> {
        self.contains(id).then_some(NodeRef { id, dom: self })
    }

    /// Get a mutable reference to a node.
    pub fn get_mut(&mut self, id: NodeId) -> Option<NodeMut<'_, V>> {
        let contains = self.contains(id);
        contains.then(|| NodeMut::new(id, self))
    }

    /// Borrow a component from the world without updating the dirty nodes.
    fn borrow_raw<'a, B: IntoBorrow>(&'a self) -> Result<B, GetStorage>
    where
        B::Borrow: shipyard::Borrow<'a, View = B>,
    {
        self.world.borrow()
    }

    /// Borrow a component from the world without updating the dirty nodes.
    fn borrow_node_type_mut(&self) -> Result<ViewMut<NodeType<V>>, GetStorage> {
        self.world.borrow()
    }

    /// Update the state of the dom, after appling some mutations. This will keep the nodes in the dom up to date with their VNode counterparts.
    pub fn update_state(
        &mut self,
        ctx: SendAnyMap,
    ) -> (FxDashSet<NodeId>, FxHashMap<NodeId, NodeMask>) {
        let nodes_created = std::mem::take(&mut self.dirty_nodes.nodes_created);

        // call node watchers
        {
            let watchers = self.node_watchers.clone();

            // ignore watchers if they are already being modified
            if let Ok(mut watchers) = watchers.try_write() {
                for id in &nodes_created {
                    for watcher in &mut *watchers {
                        watcher.on_node_added(NodeMut::new(*id, self));
                    }
                }
            };
        }

        let passes = std::mem::take(&mut self.dirty_nodes.passes_updated);
        let nodes_updated = std::mem::take(&mut self.dirty_nodes.nodes_updated);

        for (node_id, mask) in &nodes_updated {
            if self.contains(*node_id) {
                // call attribute watchers but ignore watchers if they are already being modified
                let watchers = self.attribute_watchers.clone();
                if let Ok(mut watchers) = watchers.try_write() {
                    for watcher in &mut *watchers {
                        watcher.on_attributes_changed(
                            self.get_mut(*node_id).unwrap(),
                            mask.attributes(),
                        );
                    }
                };

                // call custom element watchers
                let node = self.get_mut(*node_id).unwrap();
                let custom_element_manager =
                    node.get::<CustomElementManager<V>>().map(|x| x.clone());
                if let Some(custom_element_manager) = custom_element_manager {
                    custom_element_manager.on_attributes_changed(node, mask.attributes());
                }
            }
        }

        let dirty_nodes =
            DirtyNodeStates::with_passes(self.dirty_nodes.passes.iter().map(|p| p.this_type_id));
        let tree = self.tree_ref();
        for (node_id, passes) in passes {
            // remove any nodes that were created and then removed in the same mutations from the dirty nodes list
            if let Some(height) = tree.height(node_id) {
                for pass in passes {
                    dirty_nodes.insert(pass, node_id, height);
                }
            }
        }

        let _ = self.world.remove_unique::<DirtyNodeStates>();
        let _ = self.world.remove_unique::<SendAnyMapWrapper>();
        self.world.add_unique(dirty_nodes);
        self.world.add_unique(SendAnyMapWrapper(ctx));
        self.world.add_unique(DirtyNodesResult::default());

        self.workload.run_with_world(&self.world).unwrap();

        let dirty = self.world.remove_unique::<DirtyNodesResult>().unwrap();

        (dirty.0, nodes_updated)
    }

    /// Traverses the dom in a depth first manner, calling the provided function on each node.
    /// If `enter_shadow_dom` is true, then the traversal will enter shadow doms in the tree.
    pub fn traverse_depth_first_advanced(
        &self,
        enter_shadow_dom: bool,
        mut f: impl FnMut(NodeRef<V>),
    ) {
        let mut stack = vec![self.root_id()];
        let tree = self.tree_ref();
        while let Some(id) = stack.pop() {
            if let Some(node) = self.get(id) {
                f(node);
                let children = tree.children_ids_advanced(id, enter_shadow_dom);
                stack.extend(children.iter().copied().rev());
            }
        }
    }

    /// Traverses the dom in a depth first manner, calling the provided function on each node.
    pub fn traverse_depth_first(&self, f: impl FnMut(NodeRef<V>)) {
        self.traverse_depth_first_advanced(true, f)
    }

    /// Traverses the dom in a breadth first manner, calling the provided function on each node.
    /// If `enter_shadow_dom` is true, then the traversal will enter shadow doms in the tree.
    pub fn traverse_breadth_first_advanced(
        &self,
        enter_shadow_doms: bool,
        mut f: impl FnMut(NodeRef<V>),
    ) {
        let mut queue = VecDeque::new();
        queue.push_back(self.root_id());
        let tree = self.tree_ref();
        while let Some(id) = queue.pop_front() {
            if let Some(node) = self.get(id) {
                f(node);
                let children = tree.children_ids_advanced(id, enter_shadow_doms);
                for id in children {
                    queue.push_back(id);
                }
            }
        }
    }

    /// Traverses the dom in a breadth first manner, calling the provided function on each node.
    pub fn traverse_breadth_first(&self, f: impl FnMut(NodeRef<V>)) {
        self.traverse_breadth_first_advanced(true, f);
    }

    /// Traverses the dom in a depth first manner mutably, calling the provided function on each node.
    /// If `enter_shadow_dom` is true, then the traversal will enter shadow doms in the tree.
    pub fn traverse_depth_first_mut_advanced(
        &mut self,
        enter_shadow_doms: bool,
        mut f: impl FnMut(NodeMut<V>),
    ) {
        let mut stack = vec![self.root_id()];
        while let Some(id) = stack.pop() {
            let tree = self.tree_ref();
            let mut children = tree.children_ids_advanced(id, enter_shadow_doms);
            drop(tree);
            children.reverse();
            if let Some(node) = self.get_mut(id) {
                f(node);
                stack.extend(children.iter());
            }
        }
    }

    /// Traverses the dom in a depth first manner mutably, calling the provided function on each node.
    pub fn traverse_depth_first_mut(&mut self, f: impl FnMut(NodeMut<V>)) {
        self.traverse_depth_first_mut_advanced(true, f)
    }

    /// Traverses the dom in a breadth first manner mutably, calling the provided function on each node.
    /// If `enter_shadow_dom` is true, then the traversal will enter shadow doms in the tree.
    pub fn traverse_breadth_first_mut_advanced(
        &mut self,
        enter_shadow_doms: bool,
        mut f: impl FnMut(NodeMut<V>),
    ) {
        let mut queue = VecDeque::new();
        queue.push_back(self.root_id());
        while let Some(id) = queue.pop_front() {
            let tree = self.tree_ref();
            let children = tree.children_ids_advanced(id, enter_shadow_doms);
            drop(tree);
            if let Some(node) = self.get_mut(id) {
                f(node);
                for id in children {
                    queue.push_back(id);
                }
            }
        }
    }

    /// Traverses the dom in a breadth first manner mutably, calling the provided function on each node.
    pub fn traverse_breadth_first_mut(&mut self, f: impl FnMut(NodeMut<V>)) {
        self.traverse_breadth_first_mut_advanced(true, f);
    }

    /// Adds a [`NodeWatcher`] to the dom. Node watchers are called whenever a node is created or removed.
    pub fn add_node_watcher(&mut self, watcher: impl NodeWatcher<V> + 'static + Send + Sync) {
        self.node_watchers.write().unwrap().push(Box::new(watcher));
    }

    /// Adds an [`AttributeWatcher`] to the dom. Attribute watchers are called whenever an attribute is changed.
    pub fn add_attribute_watcher(
        &mut self,
        watcher: impl AttributeWatcher<V> + 'static + Send + Sync,
    ) {
        self.attribute_watchers
            .write()
            .unwrap()
            .push(Box::new(watcher));
    }

    /// Returns a reference to the underlying world. Any changes made to the world will not update the reactive system.
    pub fn raw_world(&self) -> &World {
        &self.world
    }

    /// Returns a mutable reference to the underlying world. Any changes made to the world will not update the reactive system.
    pub fn raw_world_mut(&mut self) -> &mut World {
        &mut self.world
    }

    /// Registers a new custom element.
    pub fn register_custom_element<E: CustomElement<V>>(&mut self) {
        self.register_custom_element_with_factory::<E, E>()
    }

    /// Registers a new custom element with a custom factory.
    pub fn register_custom_element_with_factory<F, U>(&mut self)
    where
        F: CustomElementFactory<U, V>,
        U: CustomElementUpdater<V>,
    {
        self.custom_elements.write().unwrap().register::<F, U>()
    }
}

/// A reference to a tracked component in a node.
pub struct ViewEntry<'a, V: Component + Send + Sync> {
    view: View<'a, V>,
    id: NodeId,
}

impl<'a, V: Component + Send + Sync> ViewEntry<'a, V> {
    fn new(view: View<'a, V>, id: NodeId) -> Self {
        Self { view, id }
    }
}

impl<'a, V: Component + Send + Sync> Deref for ViewEntry<'a, V> {
    type Target = V;

    fn deref(&self) -> &Self::Target {
        &self.view[self.id]
    }
}

/// A mutable reference to a tracked component in a node.
pub struct ViewEntryMut<'a, V: Component<Tracking = Untracked> + Send + Sync> {
    view: ViewMut<'a, V, Untracked>,
    id: NodeId,
}

impl<'a, V: Component<Tracking = Untracked> + Send + Sync> ViewEntryMut<'a, V> {
    fn new(view: ViewMut<'a, V, Untracked>, id: NodeId) -> Self {
        Self { view, id }
    }
}

impl<'a, V: Component<Tracking = Untracked> + Send + Sync> Deref for ViewEntryMut<'a, V> {
    type Target = V;

    fn deref(&self) -> &Self::Target {
        self.view.get(self.id).unwrap()
    }
}

impl<'a, V: Component<Tracking = Untracked> + Send + Sync> DerefMut for ViewEntryMut<'a, V> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        (&mut self.view).get(self.id).unwrap()
    }
}

/// A immutable view of a node
pub trait NodeImmutable<V: FromAnyValue + Send + Sync = ()>: Sized {
    /// Get the real dom this node was created in
    fn real_dom(&self) -> &RealDom<V>;

    /// Get the id of the current node
    fn id(&self) -> NodeId;

    /// Get the type of the current node
    #[inline]
    fn node_type(&self) -> ViewEntry<NodeType<V>> {
        self.get().unwrap()
    }

    /// Get a component from the current node
    #[inline]
    fn get<'a, T: Component + Sync + Send>(&'a self) -> Option<ViewEntry<'a, T>> {
        // self.real_dom().tree.get(self.id())
        let view: View<'a, T> = self.real_dom().borrow_raw().ok()?;
        view.contains(self.id())
            .then(|| ViewEntry::new(view, self.id()))
    }

    /// Get the ids of the children of the current node, if enter_shadow_dom is true and the current node is a shadow slot, the ids of the nodes under the node the shadow slot is attached to will be returned
    #[inline]
    fn children_ids_advanced(&self, id: NodeId, enter_shadow_dom: bool) -> Vec<NodeId> {
        self.real_dom()
            .tree_ref()
            .children_ids_advanced(id, enter_shadow_dom)
    }

    /// Get the ids of the children of the current node
    #[inline]
    fn child_ids(&self) -> Vec<NodeId> {
        self.real_dom().tree_ref().children_ids(self.id())
    }

    /// Get the children of the current node
    #[inline]
    fn children(&self) -> Vec<NodeRef<V>> {
        self.child_ids()
            .iter()
            .map(|id| NodeRef {
                id: *id,
                dom: self.real_dom(),
            })
            .collect()
    }

    /// Get the id of the parent of the current node, if enter_shadow_dom is true and the current node is a shadow root, the node the shadow root is attached to will be returned
    #[inline]
    fn parent_id_advanced(&self, id: NodeId, enter_shadow_dom: bool) -> Option<NodeId> {
        self.real_dom()
            .tree_ref()
            .parent_id_advanced(id, enter_shadow_dom)
    }

    /// Get the id of the parent of the current node
    #[inline]
    fn parent_id(&self) -> Option<NodeId> {
        self.real_dom().tree_ref().parent_id(self.id())
    }

    /// Get the parent of the current node
    #[inline]
    fn parent(&self) -> Option<NodeRef<V>> {
        self.parent_id().map(|id| NodeRef {
            id,
            dom: self.real_dom(),
        })
    }

    /// Get the node after the current node
    #[inline]
    fn next(&self) -> Option<NodeRef<V>> {
        let parent = self.parent_id()?;
        let children = self.real_dom().tree_ref().children_ids(parent);
        let index = children.iter().position(|id| *id == self.id())?;
        if index + 1 < children.len() {
            Some(NodeRef {
                id: children[index + 1],
                dom: self.real_dom(),
            })
        } else {
            None
        }
    }

    /// Get the node before the current node
    #[inline]
    fn prev(&self) -> Option<NodeRef<V>> {
        let parent = self.parent_id()?;
        let children = self.real_dom().tree_ref().children_ids(parent);
        let index = children.iter().position(|id| *id == self.id())?;
        if index > 0 {
            Some(NodeRef {
                id: children[index - 1],
                dom: self.real_dom(),
            })
        } else {
            None
        }
    }

    /// Get the height of the current node in the tree (the number of nodes between the current node and the root)
    #[inline]
    fn height(&self) -> u16 {
        self.real_dom().tree_ref().height(self.id()).unwrap()
    }
}

/// An immutable reference to a node in a RealDom
pub struct NodeRef<'a, V: FromAnyValue + Send + Sync = ()> {
    id: NodeId,
    dom: &'a RealDom<V>,
}

impl<'a, V: FromAnyValue + Send + Sync> Clone for NodeRef<'a, V> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<'a, V: FromAnyValue + Send + Sync> Copy for NodeRef<'a, V> {}

impl<'a, V: FromAnyValue + Send + Sync> NodeImmutable<V> for NodeRef<'a, V> {
    #[inline(always)]
    fn real_dom(&self) -> &RealDom<V> {
        self.dom
    }

    #[inline(always)]
    fn id(&self) -> NodeId {
        self.id
    }
}

/// A mutable refrence to a node in the RealDom that tracks what States need to be updated
pub struct NodeMut<'a, V: FromAnyValue + Send + Sync = ()> {
    id: NodeId,
    dom: &'a mut RealDom<V>,
}

impl<'a, V: FromAnyValue + Send + Sync> NodeMut<'a, V> {
    /// Create a new mutable refrence to a node in a RealDom
    pub fn new(id: NodeId, dom: &'a mut RealDom<V>) -> Self {
        Self { id, dom }
    }
}

impl<'a, V: FromAnyValue + Send + Sync> NodeImmutable<V> for NodeMut<'a, V> {
    #[inline(always)]
    fn real_dom(&self) -> &RealDom<V> {
        self.dom
    }

    #[inline(always)]
    fn id(&self) -> NodeId {
        self.id
    }
}

impl<'a, V: FromAnyValue + Send + Sync> NodeMut<'a, V> {
    /// Reborrow the node mutably
    pub fn reborrow(&mut self) -> NodeMut<'_, V> {
        NodeMut {
            id: self.id,
            dom: self.dom,
        }
    }

    /// Get the real dom this node was created in mutably
    #[inline(always)]
    pub fn real_dom_mut(&mut self) -> &mut RealDom<V> {
        self.dom
    }

    /// Get the parent of this node mutably
    #[inline]
    pub fn parent_mut(&mut self) -> Option<NodeMut<V>> {
        self.parent_id().map(|id| NodeMut { id, dom: self.dom })
    }

    /// Get a component from the current node mutably
    #[inline]
    pub fn get_mut<T: Component<Tracking = Untracked> + Sync + Send>(
        &mut self,
    ) -> Option<ViewEntryMut<T>> {
        // mark the node state as dirty
        self.dom
            .dirty_nodes
            .passes_updated
            .entry(self.id)
            .or_default()
            .insert(TypeId::of::<T>());
        let view_mut: ViewMut<T> = self.dom.borrow_raw().ok()?;
        view_mut
            .contains(self.id)
            .then_some(ViewEntryMut::new(view_mut, self.id))
    }

    /// Insert a custom component into this node
    ///
    /// Note: Components that implement State and are added when the RealDom is created will automatically be created
    #[inline]
    pub fn insert<T: Component + Sync + Send>(&mut self, value: T) {
        // mark the node state as dirty
        self.dom
            .dirty_nodes
            .passes_updated
            .entry(self.id)
            .or_default()
            .insert(TypeId::of::<T>());
        self.dom.world.add_component(self.id, value);
    }

    /// Get the next node
    #[inline]
    pub fn next_mut(self) -> Option<NodeMut<'a, V>> {
        let parent = self.parent_id()?;
        let children = self.dom.tree_mut().children_ids(parent);
        let index = children.iter().position(|id| *id == self.id)?;
        if index + 1 < children.len() {
            Some(NodeMut::new(children[index + 1], self.dom))
        } else {
            None
        }
    }

    /// Get the previous node
    #[inline]
    pub fn prev_mut(self) -> Option<NodeMut<'a, V>> {
        let parent = self.parent_id()?;
        let children = self.dom.tree_ref().children_ids(parent);
        let index = children.iter().position(|id| *id == self.id)?;
        if index > 0 {
            Some(NodeMut::new(children[index - 1], self.dom))
        } else {
            None
        }
    }

    /// Add the given node to the end of this nodes children
    #[inline]
    pub fn add_child(&mut self, child: NodeId) {
        self.dom.dirty_nodes.mark_child_changed(self.id);
        self.dom.dirty_nodes.mark_parent_added_or_removed(child);
        self.dom.tree_mut().add_child(self.id, child);
        NodeMut::new(child, self.dom).mark_moved();
    }

    /// Insert this node after the given node
    #[inline]
    pub fn insert_after(&mut self, old: NodeId) {
        let id = self.id();
        let parent_id = { self.dom.tree_ref().parent_id(old) };
        if let Some(parent_id) = parent_id {
            self.dom.dirty_nodes.mark_child_changed(parent_id);
            self.dom.dirty_nodes.mark_parent_added_or_removed(id);
        }
        self.dom.tree_mut().insert_after(old, id);
        self.mark_moved();
    }

    /// Insert this node before the given node
    #[inline]
    pub fn insert_before(&mut self, old: NodeId) {
        let id = self.id();
        let parent_id = { self.dom.tree_ref().parent_id(old) };
        if let Some(parent_id) = parent_id {
            self.dom.dirty_nodes.mark_child_changed(parent_id);
            self.dom.dirty_nodes.mark_parent_added_or_removed(id);
        }
        self.dom.tree_mut().insert_before(old, id);
        self.mark_moved();
    }

    /// Remove this node from the RealDom
    #[inline]
    pub fn remove(&mut self) {
        let id = self.id();
        {
            let RealDom {
                world,
                nodes_listening,
                ..
            } = &mut self.dom;
            let mut view: ViewMut<NodeType<V>> = world.borrow().unwrap();
            if let NodeType::Element(ElementNode { listeners, .. })
            | NodeType::Text(TextNode { listeners, .. }) = (&mut view).get(id).unwrap()
            {
                let listeners = std::mem::take(listeners);
                for event in listeners {
                    nodes_listening.get_mut(&event).unwrap().remove(&id);
                }
            }
        }
        self.mark_removed();
        let parent_id = { self.dom.tree_ref().parent_id(id) };
        if let Some(parent_id) = parent_id {
            self.real_dom_mut()
                .dirty_nodes
                .mark_child_changed(parent_id);
        }
        let children_ids = self.child_ids();
        let children_ids_vec = children_ids.to_vec();
        for child in children_ids_vec {
            self.dom.get_mut(child).unwrap().remove();
        }
        self.dom.tree_mut().remove(id);
        self.real_dom_mut().raw_world_mut().delete_entity(id);
    }

    /// Replace this node with a different node
    #[inline]
    pub fn replace(mut self, new: NodeId) {
        self.mark_removed();
        if let Some(parent_id) = self.parent_id() {
            self.real_dom_mut()
                .dirty_nodes
                .mark_child_changed(parent_id);
            self.real_dom_mut()
                .dirty_nodes
                .mark_parent_added_or_removed(new);
        }
        let id = self.id();
        self.dom.tree_mut().replace(id, new);
        self.remove();
    }

    /// Add an event listener
    #[inline]
    pub fn add_event_listener(&mut self, event: &str) {
        let id = self.id();
        let RealDom {
            world,
            dirty_nodes,
            nodes_listening,
            ..
        } = &mut self.dom;
        let mut view: ViewMut<NodeType<V>> = world.borrow().unwrap();
        let node_type: &mut NodeType<V> = (&mut view).get(self.id).unwrap();
        if let NodeType::Element(ElementNode { listeners, .. })
        | NodeType::Text(TextNode { listeners, .. }) = node_type
        {
            dirty_nodes.mark_dirty(self.id, NodeMaskBuilder::new().with_listeners().build());
            listeners.insert(event.to_string());
            match nodes_listening.get_mut(event) {
                Some(hs) => {
                    hs.insert(id);
                }
                None => {
                    let mut hs = FxHashSet::default();
                    hs.insert(id);
                    nodes_listening.insert(event.to_string(), hs);
                }
            }
        }
    }

    /// Remove an event listener
    #[inline]
    pub fn remove_event_listener(&mut self, event: &str) {
        let id = self.id();
        let RealDom {
            world,
            dirty_nodes,
            nodes_listening,
            ..
        } = &mut self.dom;
        let mut view: ViewMut<NodeType<V>> = world.borrow().unwrap();
        let node_type: &mut NodeType<V> = (&mut view).get(self.id).unwrap();
        if let NodeType::Element(ElementNode { listeners, .. })
        | NodeType::Text(TextNode { listeners, .. }) = node_type
        {
            dirty_nodes.mark_dirty(self.id, NodeMaskBuilder::new().with_listeners().build());
            listeners.remove(event);

            nodes_listening.get_mut(event).unwrap().remove(&id);
        }
    }

    /// mark that this node was removed for the incremental system
    fn mark_removed(&mut self) {
        let watchers = self.dom.node_watchers.clone();
        for watcher in &mut *watchers.write().unwrap() {
            watcher.on_node_removed(NodeMut::new(self.id(), self.dom));
        }
    }

    /// mark that this node was moved for the incremental system
    fn mark_moved(&mut self) {
        let watchers = self.dom.node_watchers.clone();
        // ignore watchers if the we are inside of a watcher
        if let Ok(mut watchers) = watchers.try_write() {
            for watcher in &mut *watchers {
                watcher.on_node_moved(NodeMut::new(self.id(), self.dom));
            }
        };
    }

    /// Get a mutable reference to the type of the current node
    pub fn node_type_mut(&mut self) -> NodeTypeMut<'_, V> {
        let id = self.id();
        let RealDom {
            world, dirty_nodes, ..
        } = &mut self.dom;
        let view: ViewMut<NodeType<V>> = world.borrow().unwrap();
        let node_type = ViewEntryMut::new(view, id);
        match &*node_type {
            NodeType::Element(_) => NodeTypeMut::Element(ElementNodeMut {
                id,
                element: node_type,
                dirty_nodes,
            }),
            NodeType::Text(_) => NodeTypeMut::Text(TextNodeMut {
                id,
                text: node_type,
                dirty_nodes,
            }),
            NodeType::Placeholder => NodeTypeMut::Placeholder,
        }
    }

    /// Set the type of the current node
    pub fn set_type(&mut self, new: NodeType<V>) {
        {
            let mut view: ViewMut<NodeType<V>> = self.dom.borrow_node_type_mut().unwrap();
            *(&mut view).get(self.id).unwrap() = new;
        }
        self.dom
            .dirty_nodes
            .mark_dirty(self.id, NodeMaskBuilder::ALL.build())
    }

    /// Clone a node and it's children and returns the id of the new node.
    /// This is more effecient than creating the node from scratch because it can pre-allocate the memory required.
    #[inline]
    pub fn clone_node(&mut self) -> NodeId {
        let new_node = self.node_type().clone();
        let rdom = self.real_dom_mut();
        let new_id = rdom.create_node(new_node).id();

        let children = self.child_ids();
        let children = children.to_vec();
        let rdom = self.real_dom_mut();
        for child in children {
            let child_id = rdom.get_mut(child).unwrap().clone_node();
            rdom.get_mut(new_id).unwrap().add_child(child_id);
        }
        new_id
    }
}

/// A mutable refrence to the type of a node in the RealDom
pub enum NodeTypeMut<'a, V: FromAnyValue + Send + Sync = ()> {
    /// An element node
    Element(ElementNodeMut<'a, V>),
    /// A text node
    Text(TextNodeMut<'a, V>),
    /// A placeholder node
    Placeholder,
}

/// A mutable refrence to a text node in the RealDom
pub struct TextNodeMut<'a, V: FromAnyValue + Send + Sync = ()> {
    id: NodeId,
    text: ViewEntryMut<'a, NodeType<V>>,
    dirty_nodes: &'a mut NodesDirty<V>,
}

impl<V: FromAnyValue + Send + Sync> TextNodeMut<'_, V> {
    /// Get the underlying test of the node
    pub fn text(&self) -> &str {
        match &*self.text {
            NodeType::Text(text) => &text.text,
            _ => unreachable!(),
        }
    }

    /// Get the underlying text mutably
    pub fn text_mut(&mut self) -> &mut String {
        self.dirty_nodes
            .mark_dirty(self.id, NodeMaskBuilder::new().with_text().build());
        match &mut *self.text {
            NodeType::Text(text) => &mut text.text,
            _ => unreachable!(),
        }
    }
}

impl<V: FromAnyValue + Send + Sync> Deref for TextNodeMut<'_, V> {
    type Target = String;

    fn deref(&self) -> &Self::Target {
        match &*self.text {
            NodeType::Text(text) => &text.text,
            _ => unreachable!(),
        }
    }
}

impl<V: FromAnyValue + Send + Sync> DerefMut for TextNodeMut<'_, V> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.text_mut()
    }
}

/// A mutable refrence to a text Element node in the RealDom
pub struct ElementNodeMut<'a, V: FromAnyValue + Send + Sync = ()> {
    id: NodeId,
    element: ViewEntryMut<'a, NodeType<V>>,
    dirty_nodes: &'a mut NodesDirty<V>,
}

impl std::fmt::Debug for ElementNodeMut<'_> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("ElementNodeMut")
            .field("id", &self.id)
            .field("element", &*self.element)
            .finish()
    }
}

impl<V: FromAnyValue + Send + Sync> ElementNodeMut<'_, V> {
    /// Get the current element
    fn element(&self) -> &ElementNode<V> {
        match &*self.element {
            NodeType::Element(element) => element,
            _ => unreachable!(),
        }
    }

    /// Get the current element mutably (does not mark anything as dirty)
    fn element_mut(&mut self) -> &mut ElementNode<V> {
        match &mut *self.element {
            NodeType::Element(element) => element,
            _ => unreachable!(),
        }
    }

    /// Get the tag of the element
    pub fn tag(&self) -> &str {
        &self.element().tag
    }

    /// Get a mutable reference to the tag of the element
    pub fn tag_mut(&mut self) -> &mut String {
        self.dirty_nodes
            .mark_dirty(self.id, NodeMaskBuilder::new().with_tag().build());
        &mut self.element_mut().tag
    }

    /// Get a reference to the namespace the element is in
    pub fn namespace(&self) -> Option<&str> {
        self.element().namespace.as_deref()
    }

    /// Get a mutable reference to the namespace the element is in
    pub fn namespace_mut(&mut self) -> &mut Option<String> {
        self.dirty_nodes
            .mark_dirty(self.id, NodeMaskBuilder::new().with_namespace().build());
        &mut self.element_mut().namespace
    }

    /// Get a reference to all of the attributes currently set on the element
    pub fn attributes(&self) -> &FxHashMap<OwnedAttributeDiscription, OwnedAttributeValue<V>> {
        &self.element().attributes
    }

    /// Set an attribute in the element
    pub fn set_attribute(
        &mut self,
        name: impl Into<OwnedAttributeDiscription>,
        value: impl Into<OwnedAttributeValue<V>>,
    ) -> Option<OwnedAttributeValue<V>> {
        let name = name.into();
        let value = value.into();
        self.dirty_nodes.mark_dirty(
            self.id,
            NodeMaskBuilder::new()
                .with_attrs(AttributeMaskBuilder::Some(&[&name.name]))
                .build(),
        );
        self.element_mut().attributes.insert(name, value)
    }

    /// Remove an attribute from the element
    pub fn remove_attribute(
        &mut self,
        name: &OwnedAttributeDiscription,
    ) -> Option<OwnedAttributeValue<V>> {
        self.dirty_nodes.mark_dirty(
            self.id,
            NodeMaskBuilder::new()
                .with_attrs(AttributeMaskBuilder::Some(&[&name.name]))
                .build(),
        );
        self.element_mut().attributes.remove(name)
    }

    /// Get an attribute of the element
    pub fn get_attribute_mut(
        &mut self,
        name: &OwnedAttributeDiscription,
    ) -> Option<&mut OwnedAttributeValue<V>> {
        self.dirty_nodes.mark_dirty(
            self.id,
            NodeMaskBuilder::new()
                .with_attrs(AttributeMaskBuilder::Some(&[&name.name]))
                .build(),
        );
        self.element_mut().attributes.get_mut(name)
    }

    /// Get an attribute of the element
    pub fn get_attribute(
        &self,
        name: &OwnedAttributeDiscription,
    ) -> Option<&OwnedAttributeValue<V>> {
        self.element().attributes.get(name)
    }

    /// Get the set of all events the element is listening to
    pub fn listeners(&self) -> &FxHashSet<String> {
        &self.element().listeners
    }
}

// Create a workload from all of the passes. This orders the passes so that each pass will only run at most once.
fn construct_workload<V: FromAnyValue + Send + Sync>(
    passes: &mut [TypeErasedState<V>],
) -> Workload {
    let mut workload = Workload::new("Main Workload");
    // Assign a unique index to keep track of each pass
    let mut unresloved_workloads = passes
        .iter_mut()
        .enumerate()
        .map(|(i, pass)| {
            let workload = Some(pass.create_workload());
            (i, pass, workload)
        })
        .collect::<Vec<_>>();
    // set all the labels
    for (id, _, workload) in &mut unresloved_workloads {
        *workload = Some(workload.take().unwrap().tag(id.to_string()));
    }
    // mark any dependancies
    for i in 0..unresloved_workloads.len() {
        let (_, pass, _) = &unresloved_workloads[i];
        let all_dependancies: Vec<_> = pass.combined_dependancy_type_ids().collect();
        for ty_id in all_dependancies {
            let &(dependancy_id, _, _) = unresloved_workloads
                .iter()
                .find(|(_, pass, _)| pass.this_type_id == ty_id)
                .unwrap();
            let (_, _, workload) = &mut unresloved_workloads[i];
            *workload = workload
                .take()
                .map(|workload| workload.after_all(dependancy_id.to_string()));
        }
    }
    // Add all of the passes
    for (_, _, mut workload_system) in unresloved_workloads {
        workload = workload.with_system(workload_system.take().unwrap());
    }
    workload
}