dioxus_rsx_hotreload/
diff.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
//! This module contains the diffing logic for rsx hot reloading.
//!
//! There's a few details that I wish we could've gotten right but we can revisit later:
//!
//! - Expanding an if chain is not possible - only its contents can be hot reloaded
//!
//! - Components that don't start with children can't be hot reloaded - IE going from `Comp {}` to `Comp { "foo" }`
//!   is not possible. We could in theory allow this by seeding all Components with a `children` field.
//!
//! - Cross-templates hot reloading is not possible - multiple templates don't share the dynamic pool. This would require handling aliases
//!   in hot reload diffing.
//!
//! - We've proven that binary patching is feasible but has a longer path to stabilization for all platforms.
//!   Binary patching is pretty quick, actually, and *might* remove the need to literal hot reloading.
//!   However, you could imagine a scenario where literal hot reloading would be useful without the
//!   compiler in the loop. Ideally we can slash most of this code once patching is stable.
//!
//! ## Assigning/Scoring Templates
//!
//! We can clone most dynamic items from the last full rebuild:
//! - Dynamic text segments: `div { width: "{x}%" } -> div { width: "{x}%", height: "{x}%" }`
//! - Dynamic attributes: `div { width: dynamic } -> div { width: dynamic, height: dynamic }`
//! - Dynamic nodes: `div { {children} } -> div { {children} {children} }`
//!
//! But we cannot clone rsx bodies themselves because we cannot hot reload the new rsx body:
//! - `div { Component { "{text}" } } -> div { Component { "{text}" } Component { "hello" } }` // We can't create a template for both "{text}" and "hello"
//!
//! In some cases, two nodes with children are ambiguous. For example:
//! ```rust, ignore
//! rsx! {
//!     div {
//!         Component { "{text}" }
//!         Component { "hello" }
//!     }
//! }
//! ```
//!
//! Outside of the template, both components are compatible for hot reloading.
//!
//! After we create a list of all components with compatible names and props, we need to find the best match for the
//! template.
//!
//!
//! Dioxus uses a greedy algorithm to find the best match. We first try to create the child template with the dynamic context from the last full rebuild.
//! Then we use the child template that leaves the least unused dynamic items in the pool to create the new template.
//!
//! For the example above:
//! - Hot reloading `Component { "hello" }`:
//!   - Try to hot reload the component body `"hello"` with the dynamic pool from `"{text}"`: Success with 1 unused dynamic item
//!   - Try to hot reload the component body `"hello"` with the dynamic pool from `"hello"`: Success with 0 unused dynamic items
//!   - We use the the template that leaves the least unused dynamic items in the pool - `"hello"`
//! - Hot reloading `Component { "{text}" }`:
//!   - Try to hot reload the component body `"{text}"` with the dynamic pool from `"{text}"`: Success with 0 unused dynamic items
//!   - The `"hello"` template has already been hot reloaded, so we don't try to hot reload it again
//!   - We use the the template that leaves the least unused dynamic items in the pool - `"{text}"`
//!
//! Greedy algorithms are optimal when:
//! - The step we take reduces the problem size
//! - The subproblem is optimal
//!
//! In this case, hot reloading a template removes it from the pool of templates we can use to hot reload the next template which reduces the problem size.
//!
//! The subproblem is optimal because the alternative is leaving less dynamic items for the remaining templates to hot reload which just makes it
//! more difficult to match future templates.

use dioxus_core::internal::{
    FmtedSegments, HotReloadAttributeValue, HotReloadDynamicAttribute, HotReloadDynamicNode,
    HotReloadLiteral, HotReloadedTemplate, NamedAttribute,
};
use dioxus_core_types::HotReloadingContext;
use dioxus_rsx::*;
use std::collections::HashMap;

use crate::extensions::{html_tag_and_namespace, intern, to_template_node};

use super::last_build_state::LastBuildState;

/// A result of hot reloading
///
/// This contains information about what has changed so the hotreloader can apply the right changes
#[non_exhaustive]
#[derive(Debug, PartialEq, Clone)]
pub struct HotReloadResult {
    /// The child templates we have already used. As we walk through the template tree, we will run into child templates.
    /// Each of those child templates also need to be hot reloaded. We keep track of which ones we've already hotreloaded
    /// to avoid diffing the same template twice against different new templates.
    ///
    /// ```rust, ignore
    /// rsx! {
    ///     Component { class: "{class}", "{text}" } // The children of a Component is a new template
    ///     for item in items {
    ///         "{item}" // The children of a for loop is a new template
    ///     }
    ///     if true {
    ///         "{text}" // The children of an if chain is a new template
    ///     }
    /// }
    /// ```
    ///
    /// If we hotreload the component, we don't need to hotreload the for loop
    ///
    /// You should diff the result of this against the old template to see if you actually need to send down the result
    pub templates: HashMap<usize, HotReloadedTemplate>,

    /// The state of the last full rebuild.
    full_rebuild_state: LastBuildState,

    /// The dynamic nodes for the current node
    dynamic_nodes: Vec<HotReloadDynamicNode>,

    /// The dynamic attributes for the current node
    dynamic_attributes: Vec<HotReloadDynamicAttribute>,

    /// The literal component properties for the current node
    literal_component_properties: Vec<HotReloadLiteral>,
}

impl HotReloadResult {
    /// Calculate the hot reload diff between two template bodies
    pub fn new<Ctx: HotReloadingContext>(
        full_rebuild_state: &TemplateBody,
        new: &TemplateBody,
        name: String,
    ) -> Option<Self> {
        // Normalize both the full rebuild state and the new state for rendering
        let full_rebuild_state = full_rebuild_state.normalized();
        let new = new.normalized();
        let full_rebuild_state = LastBuildState::new(&full_rebuild_state, name);
        let mut s = Self {
            full_rebuild_state,
            templates: Default::default(),
            dynamic_nodes: Default::default(),
            dynamic_attributes: Default::default(),
            literal_component_properties: Default::default(),
        };

        s.hotreload_body::<Ctx>(&new)?;

        Some(s)
    }

    fn extend(&mut self, other: Self) {
        self.templates.extend(other.templates);
    }

    /// Walk the dynamic contexts and do our best to find hot reload-able changes between the two
    /// sets of dynamic nodes/attributes. If there's a change we can't hot reload, we'll return None
    ///
    /// Otherwise, we pump out the list of templates that need to be updated. The templates will be
    /// re-ordered such that the node paths will be adjusted to match the new template for every
    /// existing dynamic node.
    ///
    /// ```ignore
    /// old:
    ///     [[0], [1], [2]]
    ///     rsx! {
    ///         "{one}"
    ///         "{two}"
    ///         "{three}"
    ///     }
    ///
    /// new:
    ///     [[0], [2], [1, 1]]
    ///     rsx! {
    ///        "{one}"
    ///         div { "{three}" }
    ///         "{two}"
    ///    }
    /// ```
    ///
    /// Generally we can't hot reload a node if:
    /// - We add or modify a new rust expression
    ///   - Adding a new formatted segment we haven't seen before
    ///   - Adding a new dynamic node (loop, fragment, if chain, etc)
    /// - We add a new component field
    /// - We remove a component field
    /// - We change the type of a component field
    ///
    /// If a dynamic node is removed, we don't necessarily need to kill hot reload - just unmounting it should be enough
    /// If the dynamic node is re-added, we want to be able to find it again.
    ///
    /// This encourages the hot reloader to hot onto DynamicContexts directly instead of the CallBody since
    /// you can preserve more information about the nodes as they've changed over time.
    fn hotreload_body<Ctx: HotReloadingContext>(&mut self, new: &TemplateBody) -> Option<()> {
        // Quickly run through dynamic attributes first attempting to invalidate them
        // Move over old IDs onto the new template
        self.hotreload_attributes::<Ctx>(new)?;
        let new_dynamic_attributes = std::mem::take(&mut self.dynamic_attributes);

        // Now we can run through the dynamic nodes and see if we can hot reload them
        // Move over old IDs onto the new template
        self.hotreload_dynamic_nodes::<Ctx>(new)?;
        let new_dynamic_nodes = std::mem::take(&mut self.dynamic_nodes);
        let literal_component_properties = std::mem::take(&mut self.literal_component_properties);

        let key = self.hot_reload_key(new)?;

        let roots: Vec<_> = new
            .roots
            .iter()
            .map(|node| to_template_node::<Ctx>(node))
            .collect();
        let roots: &[dioxus_core::TemplateNode] = intern(&*roots);

        let template = HotReloadedTemplate::new(
            key,
            new_dynamic_nodes,
            new_dynamic_attributes,
            literal_component_properties,
            roots,
        );

        self.templates
            .insert(self.full_rebuild_state.root_index.get(), template);

        Some(())
    }

    fn hot_reload_key(&mut self, new: &TemplateBody) -> Option<Option<FmtedSegments>> {
        match new.implicit_key() {
            Some(AttributeValue::AttrLiteral(HotLiteral::Fmted(value))) => Some(Some(
                self.full_rebuild_state
                    .hot_reload_formatted_segments(value)?,
            )),
            None => Some(None),
            _ => None,
        }
    }

    fn hotreload_dynamic_nodes<Ctx: HotReloadingContext>(
        &mut self,
        new: &TemplateBody,
    ) -> Option<()> {
        for new_node in new.dynamic_nodes() {
            self.hot_reload_node::<Ctx>(new_node)?
        }

        Some(())
    }

    fn hot_reload_node<Ctx: HotReloadingContext>(&mut self, node: &BodyNode) -> Option<()> {
        match node {
            BodyNode::Text(text) => self.hotreload_text_node(text),
            BodyNode::Component(component) => self.hotreload_component::<Ctx>(component),
            BodyNode::ForLoop(forloop) => self.hotreload_for_loop::<Ctx>(forloop),
            BodyNode::IfChain(ifchain) => self.hotreload_if_chain::<Ctx>(ifchain),
            BodyNode::RawExpr(expr) => self.hotreload_raw_expr(expr),
            BodyNode::Element(_) => Some(()),
        }
    }

    fn hotreload_raw_expr(&mut self, expr: &ExprNode) -> Option<()> {
        // Try to find the raw expr in the last build
        let expr_index = self
            .full_rebuild_state
            .dynamic_nodes
            .position(|node| match &node {
                BodyNode::RawExpr(raw_expr) => raw_expr.expr == expr.expr,
                _ => false,
            })?;

        // If we find it, push it as a dynamic node
        self.dynamic_nodes
            .push(HotReloadDynamicNode::Dynamic(expr_index));

        Some(())
    }

    fn hotreload_for_loop<Ctx>(&mut self, forloop: &ForLoop) -> Option<()>
    where
        Ctx: HotReloadingContext,
    {
        // Find all for loops that have the same pattern and expression
        let candidate_for_loops = self
            .full_rebuild_state
            .dynamic_nodes
            .inner
            .iter()
            .enumerate()
            .filter_map(|(index, node)| {
                if let BodyNode::ForLoop(for_loop) = &node.inner {
                    if for_loop.pat == forloop.pat && for_loop.expr == forloop.expr {
                        return Some((index, for_loop));
                    }
                }
                None
            })
            .collect::<Vec<_>>();

        // Then find the one that has the least wasted dynamic items when hot reloading the body
        let (index, best_call_body) = self.diff_best_call_body::<Ctx>(
            candidate_for_loops
                .iter()
                .map(|(_, for_loop)| &for_loop.body),
            &forloop.body,
        )?;

        // Push the new for loop as a dynamic node
        self.dynamic_nodes
            .push(HotReloadDynamicNode::Dynamic(candidate_for_loops[index].0));

        self.extend(best_call_body);

        Some(())
    }

    fn hotreload_text_node(&mut self, text_node: &TextNode) -> Option<()> {
        // If it is static, it is already included in the template and we don't need to do anything
        if text_node.input.is_static() {
            return Some(());
        }
        // Otherwise, hot reload the formatted segments and push that as a dynamic node
        let formatted_segments = self
            .full_rebuild_state
            .hot_reload_formatted_segments(&text_node.input)?;
        self.dynamic_nodes
            .push(HotReloadDynamicNode::Formatted(formatted_segments));
        Some(())
    }

    /// Find the call body that minimizes the number of wasted dynamic items
    ///
    /// Returns the index of the best call body and the state of the best call body
    fn diff_best_call_body<'a, Ctx>(
        &self,
        bodies: impl Iterator<Item = &'a TemplateBody>,
        new_call_body: &TemplateBody,
    ) -> Option<(usize, Self)>
    where
        Ctx: HotReloadingContext,
    {
        let mut best_score = usize::MAX;
        let mut best_output = None;
        for (index, body) in bodies.enumerate() {
            // Skip templates we've already hotreloaded
            if self.templates.contains_key(&body.template_idx.get()) {
                continue;
            }
            if let Some(state) =
                Self::new::<Ctx>(body, new_call_body, self.full_rebuild_state.name.clone())
            {
                let score = state.full_rebuild_state.unused_dynamic_items();
                if score < best_score {
                    best_score = score;
                    best_output = Some((index, state));
                }
            }
        }

        best_output
    }

    fn hotreload_component<Ctx>(&mut self, component: &Component) -> Option<()>
    where
        Ctx: HotReloadingContext,
    {
        // First we need to find the component that matches the best in the last build
        // We try each build and choose the option that wastes the least dynamic items
        let components_with_matching_attributes: Vec<_> = self
            .full_rebuild_state
            .dynamic_nodes
            .inner
            .iter()
            .enumerate()
            .filter_map(|(index, node)| {
                if let BodyNode::Component(comp) = &node.inner {
                    return Some((
                        index,
                        comp,
                        self.hotreload_component_fields(comp, component)?,
                    ));
                }
                None
            })
            .collect();

        let possible_bodies = components_with_matching_attributes
            .iter()
            .map(|(_, comp, _)| &comp.children);

        let (index, new_body) =
            self.diff_best_call_body::<Ctx>(possible_bodies, &component.children)?;

        let (index, _, literal_component_properties) = &components_with_matching_attributes[index];
        let index = *index;

        self.full_rebuild_state.dynamic_nodes.inner[index]
            .used
            .set(true);

        self.literal_component_properties
            .extend(literal_component_properties.iter().cloned());

        self.extend(new_body);

        // Push the new component as a dynamic node
        self.dynamic_nodes
            .push(HotReloadDynamicNode::Dynamic(index));

        Some(())
    }

    fn hotreload_component_fields(
        &self,
        old_component: &Component,
        new_component: &Component,
    ) -> Option<Vec<HotReloadLiteral>> {
        // First check if the component is the same
        if new_component.name != old_component.name {
            return None;
        }

        // Then check if the fields are the same
        let new_non_key_fields: Vec<_> = new_component.component_props().collect();
        let old_non_key_fields: Vec<_> = old_component.component_props().collect();
        if new_non_key_fields.len() != old_non_key_fields.len() {
            return None;
        }

        let mut new_fields = new_non_key_fields.clone();
        new_fields.sort_by_key(|attribute| attribute.name.to_string());
        let mut old_fields = old_non_key_fields.iter().enumerate().collect::<Vec<_>>();
        old_fields.sort_by_key(|(_, attribute)| attribute.name.to_string());

        // The literal component properties for the component in same the order as the original component property literals
        let mut literal_component_properties = vec![None; old_fields.len()];

        for (new_field, (index, old_field)) in new_fields.iter().zip(old_fields.iter()) {
            // Verify the names match
            if new_field.name != old_field.name {
                return None;
            }

            // Verify the values match
            match (&new_field.value, &old_field.value) {
                // If the values are both literals, we can try to hotreload them
                (
                    AttributeValue::AttrLiteral(new_value),
                    AttributeValue::AttrLiteral(old_value),
                ) => {
                    // Make sure that the types are the same
                    if std::mem::discriminant(new_value) != std::mem::discriminant(old_value) {
                        return None;
                    }
                    let literal = self.full_rebuild_state.hotreload_hot_literal(new_value)?;
                    literal_component_properties[*index] = Some(literal);
                }
                _ => {
                    if new_field.value != old_field.value {
                        return None;
                    }
                }
            }
        }

        Some(literal_component_properties.into_iter().flatten().collect())
    }

    /// Hot reload an if chain
    fn hotreload_if_chain<Ctx: HotReloadingContext>(
        &mut self,
        new_if_chain: &IfChain,
    ) -> Option<()> {
        let mut best_if_chain = None;
        let mut best_score = usize::MAX;

        let if_chains = self
            .full_rebuild_state
            .dynamic_nodes
            .inner
            .iter()
            .enumerate()
            .filter_map(|(index, node)| {
                if let BodyNode::IfChain(if_chain) = &node.inner {
                    return Some((index, if_chain));
                }
                None
            });

        // Find the if chain that matches all of the conditions and wastes the least dynamic items
        for (index, old_if_chain) in if_chains {
            let Some(chain_templates) = Self::diff_if_chains::<Ctx>(
                old_if_chain,
                new_if_chain,
                self.full_rebuild_state.name.clone(),
            ) else {
                continue;
            };
            let score = chain_templates
                .iter()
                .map(|t| t.full_rebuild_state.unused_dynamic_items())
                .sum();
            if score < best_score {
                best_score = score;
                best_if_chain = Some((index, chain_templates));
            }
        }

        // If we found a hot reloadable if chain, hotreload it
        let (index, chain_templates) = best_if_chain?;
        // Mark the if chain as used
        self.full_rebuild_state.dynamic_nodes.inner[index]
            .used
            .set(true);
        // Merge the hot reload changes into the current state
        for template in chain_templates {
            self.extend(template);
        }

        // Push the new if chain as a dynamic node
        self.dynamic_nodes
            .push(HotReloadDynamicNode::Dynamic(index));

        Some(())
    }

    /// Hot reload an if chain
    fn diff_if_chains<Ctx: HotReloadingContext>(
        old_if_chain: &IfChain,
        new_if_chain: &IfChain,
        name: String,
    ) -> Option<Vec<Self>> {
        // Go through each part of the if chain and find the best match
        let mut old_chain = old_if_chain;
        let mut new_chain = new_if_chain;

        let mut chain_templates = Vec::new();

        loop {
            // Make sure the conditions are the same
            if old_chain.cond != new_chain.cond {
                return None;
            }

            // If the branches are the same, we can hotreload them
            let hot_reload =
                Self::new::<Ctx>(&old_chain.then_branch, &new_chain.then_branch, name.clone())?;
            chain_templates.push(hot_reload);

            // Make sure the if else branches match
            match (
                old_chain.else_if_branch.as_ref(),
                new_chain.else_if_branch.as_ref(),
            ) {
                (Some(old), Some(new)) => {
                    old_chain = old;
                    new_chain = new;
                }
                (None, None) => {
                    break;
                }
                _ => return None,
            }
        }
        // Make sure the else branches match
        match (&old_chain.else_branch, &new_chain.else_branch) {
            (Some(old), Some(new)) => {
                let template = Self::new::<Ctx>(old, new, name.clone())?;
                chain_templates.push(template);
            }
            (None, None) => {}
            _ => return None,
        }

        Some(chain_templates)
    }

    /// Take a new template body and return the attributes that can be hot reloaded from the last build
    ///
    /// IE if we shuffle attributes, remove attributes or add new attributes with the same dynamic segments, around we should be able to hot reload them.
    ///
    /// ```rust, ignore
    /// rsx! {
    ///     div { id: "{id}", class: "{class}", width, "Hi" }
    /// }
    ///
    /// rsx! {
    ///     div { width, class: "{class}", id: "{id} and {class}", "Hi" }
    /// }
    /// ```
    fn hotreload_attributes<Ctx: HotReloadingContext>(&mut self, new: &TemplateBody) -> Option<()> {
        // Walk through each attribute and create a new HotReloadAttribute for each one
        for new_attr in new.dynamic_attributes() {
            // While we're here, if it's a literal and not a perfect score, it's a mismatch and we need to
            // hotreload the literal
            self.hotreload_attribute::<Ctx>(new_attr)?;
        }

        Some(())
    }

    /// Try to hot reload an attribute and return the new HotReloadAttribute
    fn hotreload_attribute<Ctx: HotReloadingContext>(
        &mut self,
        attribute: &Attribute,
    ) -> Option<()> {
        let (tag, namespace) = html_tag_and_namespace::<Ctx>(attribute);

        // If the attribute is a spread, try to grab it from the last build
        // If it wasn't in the last build with the same name, we can't hot reload it
        if let AttributeName::Spread(_) = &attribute.name {
            let hot_reload_attribute = self
                .full_rebuild_state
                .dynamic_attributes
                .position(|a| a.name == attribute.name && a.value == attribute.value)?;
            self.dynamic_attributes
                .push(HotReloadDynamicAttribute::Dynamic(hot_reload_attribute));

            return Some(());
        }

        // Otherwise the attribute is named, try to hot reload the value
        let value = match &attribute.value {
            // If the attribute is a literal, we can generally hot reload it if the formatted segments exist in the last build
            AttributeValue::AttrLiteral(literal) => {
                // If it is static, it is already included in the template and we don't need to do anything
                if literal.is_static() {
                    return Some(());
                }
                // Otherwise, hot reload the literal and push that as a dynamic attribute
                let hot_reload_literal = self.full_rebuild_state.hotreload_hot_literal(literal)?;
                HotReloadAttributeValue::Literal(hot_reload_literal)
            }
            // If it isn't a literal, try to find an exact match for the attribute value from the last build
            _ => {
                let value_index = self.full_rebuild_state.dynamic_attributes.position(|a| {
                    // Spread attributes are not hot reloaded
                    if matches!(a.name, AttributeName::Spread(_)) {
                        return false;
                    }
                    if a.value != attribute.value {
                        return false;
                    }
                    // The type of event handlers is influenced by the event name, so te cannot hot reload between different event
                    // names
                    if matches!(a.value, AttributeValue::EventTokens(_)) && a.name != attribute.name
                    {
                        return false;
                    }
                    true
                })?;
                HotReloadAttributeValue::Dynamic(value_index)
            }
        };

        self.dynamic_attributes
            .push(HotReloadDynamicAttribute::Named(NamedAttribute::new(
                tag, namespace, value,
            )));

        Some(())
    }
}