dioxus_signals/global/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
use dioxus_core::ScopeId;
use generational_box::BorrowResult;
use std::{any::Any, cell::RefCell, collections::HashMap, ops::Deref, panic::Location, rc::Rc};

mod memo;
pub use memo::*;

mod signal;
pub use signal::*;

use crate::{Readable, ReadableRef, Signal, Writable, WritableRef};

/// A trait for an item that can be constructed from an initialization function
pub trait InitializeFromFunction<T> {
    /// Create an instance of this type from an initialization function
    fn initialize_from_function(f: fn() -> T) -> Self;
}

impl<T> InitializeFromFunction<T> for T {
    fn initialize_from_function(f: fn() -> T) -> Self {
        f()
    }
}

/// A lazy value that is created once per application and can be accessed from anywhere in that application
pub struct Global<T, R = T> {
    constructor: fn() -> R,
    key: GlobalKey<'static>,
    phantom: std::marker::PhantomData<fn() -> T>,
}

/// Allow calling a signal with signal() syntax
///
/// Currently only limited to copy types, though could probably specialize for string/arc/rc
impl<T: Clone + 'static, R: Clone + 'static> Deref for Global<T, R>
where
    T: Readable<Target = R> + InitializeFromFunction<R>,
{
    type Target = dyn Fn() -> R;

    fn deref(&self) -> &Self::Target {
        unsafe { Readable::deref_impl(self) }
    }
}

impl<T: Clone + 'static, R: 'static> Readable for Global<T, R>
where
    T: Readable<Target = R> + InitializeFromFunction<R>,
{
    type Target = R;
    type Storage = T::Storage;

    #[track_caller]
    fn try_read_unchecked(
        &self,
    ) -> Result<ReadableRef<'static, Self>, generational_box::BorrowError> {
        self.resolve().try_read_unchecked()
    }

    #[track_caller]
    fn try_peek_unchecked(&self) -> BorrowResult<ReadableRef<'static, Self>> {
        self.resolve().try_peek_unchecked()
    }
}

impl<T: Clone + 'static, R: 'static> Writable for Global<T, R>
where
    T: Writable<Target = R> + InitializeFromFunction<R>,
{
    type Mut<'a, Read: ?Sized + 'static> = T::Mut<'a, Read>;

    fn map_mut<I: ?Sized, U: ?Sized + 'static, F: FnOnce(&mut I) -> &mut U>(
        ref_: Self::Mut<'_, I>,
        f: F,
    ) -> Self::Mut<'_, U> {
        T::map_mut(ref_, f)
    }

    fn try_map_mut<
        I: ?Sized + 'static,
        U: ?Sized + 'static,
        F: FnOnce(&mut I) -> Option<&mut U>,
    >(
        ref_: Self::Mut<'_, I>,
        f: F,
    ) -> Option<Self::Mut<'_, U>> {
        T::try_map_mut(ref_, f)
    }

    fn downcast_lifetime_mut<'a: 'b, 'b, Read: ?Sized + 'static>(
        mut_: Self::Mut<'a, Read>,
    ) -> Self::Mut<'b, Read> {
        T::downcast_lifetime_mut(mut_)
    }

    #[track_caller]
    fn try_write_unchecked(
        &self,
    ) -> Result<WritableRef<'static, Self>, generational_box::BorrowMutError> {
        self.resolve().try_write_unchecked()
    }
}

impl<T: Clone + 'static, R: 'static> Global<T, R>
where
    T: Writable<Target = R> + InitializeFromFunction<R>,
{
    /// Write this value
    pub fn write(&self) -> T::Mut<'static, R> {
        self.resolve().try_write_unchecked().unwrap()
    }

    /// Run a closure with a mutable reference to the signal's value.
    /// If the signal has been dropped, this will panic.
    #[track_caller]
    pub fn with_mut<O>(&self, f: impl FnOnce(&mut R) -> O) -> O {
        self.resolve().with_mut(f)
    }
}

impl<T: Clone + 'static, R> Global<T, R>
where
    T: InitializeFromFunction<R>,
{
    #[track_caller]
    /// Create a new global value
    pub const fn new(constructor: fn() -> R) -> Self {
        let key = std::panic::Location::caller();
        Self {
            constructor,
            key: GlobalKey::new(key),
            phantom: std::marker::PhantomData,
        }
    }

    /// Create this global signal with a specific key.
    /// This is useful for ensuring that the signal is unique across the application and accessible from
    /// outside the application too.
    #[track_caller]
    pub const fn with_name(constructor: fn() -> R, key: &'static str) -> Self {
        Self {
            constructor,
            key: GlobalKey::File {
                file: key,
                line: 0,
                column: 0,
                index: 0,
            },
            phantom: std::marker::PhantomData,
        }
    }

    /// Create this global signal with a specific key.
    /// This is useful for ensuring that the signal is unique across the application and accessible from
    /// outside the application too.
    #[track_caller]
    pub const fn with_location(
        constructor: fn() -> R,
        file: &'static str,
        line: u32,
        column: u32,
        index: usize,
    ) -> Self {
        Self {
            constructor,
            key: GlobalKey::File {
                file,
                line: line as _,
                column: column as _,
                index: index as _,
            },
            phantom: std::marker::PhantomData,
        }
    }

    /// Get the key for this global
    pub fn key(&self) -> GlobalKey<'static> {
        self.key.clone()
    }

    /// Resolve the global value. This will try to get the existing value from the current virtual dom, and if it doesn't exist, it will create a new one.
    // NOTE: This is not called "get" or "value" because those methods overlap with Readable and Writable
    pub fn resolve(&self) -> T {
        let key = self.key();

        let context = get_global_context();

        // Get the entry if it already exists
        {
            let read = context.map.borrow();
            if let Some(signal) = read.get(&key) {
                return signal.downcast_ref::<T>().cloned().unwrap();
            }
        }
        // Otherwise, create it
        // Constructors are always run in the root scope
        let signal = ScopeId::ROOT.in_runtime(|| T::initialize_from_function(self.constructor));
        context
            .map
            .borrow_mut()
            .insert(key, Box::new(signal.clone()));
        signal
    }

    /// Get the scope the signal was created in.
    pub fn origin_scope(&self) -> ScopeId {
        ScopeId::ROOT
    }
}

/// The context for global signals
#[derive(Clone, Default)]
pub struct GlobalLazyContext {
    map: Rc<RefCell<HashMap<GlobalKey<'static>, Box<dyn Any>>>>,
}

/// A key used to identify a signal in the global signal context
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum GlobalKey<'a> {
    /// A key derived from a `std::panic::Location` type
    File {
        /// The file name
        file: &'a str,

        /// The line number
        line: u32,

        /// The column number
        column: u32,

        /// The index of the signal in the file - used to disambiguate macro calls
        index: u32,
    },

    /// A raw key derived just from a string
    Raw(&'a str),
}

impl<'a> GlobalKey<'a> {
    /// Create a new key from a location
    pub const fn new(key: &'a Location<'a>) -> Self {
        GlobalKey::File {
            file: key.file(),
            line: key.line(),
            column: key.column(),
            index: 0,
        }
    }
}

impl From<&'static Location<'static>> for GlobalKey<'static> {
    fn from(key: &'static Location<'static>) -> Self {
        Self::new(key)
    }
}

impl GlobalLazyContext {
    /// Get a signal with the given string key
    /// The key will be converted to a UUID with the appropriate internal namespace
    pub fn get_signal_with_key<T>(&self, key: GlobalKey) -> Option<Signal<T>> {
        self.map.borrow().get(&key).map(|f| {
            *f.downcast_ref::<Signal<T>>().unwrap_or_else(|| {
                panic!(
                    "Global signal with key {:?} is not of the expected type. Keys are {:?}",
                    key,
                    self.map.borrow().keys()
                )
            })
        })
    }
}

/// Get the global context for signals
pub fn get_global_context() -> GlobalLazyContext {
    match ScopeId::ROOT.has_context() {
        Some(context) => context,
        None => ScopeId::ROOT.provide_context(Default::default()),
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    /// Test that keys of global signals are correctly generated and different from one another.
    /// We don't want signals to merge, but we also want them to use both string IDs and memory addresses.
    #[test]
    fn test_global_keys() {
        // we're using consts since it's harder than statics due to merging - these won't be merged
        const MYSIGNAL: GlobalSignal<i32> = GlobalSignal::new(|| 42);
        const MYSIGNAL2: GlobalSignal<i32> = GlobalSignal::new(|| 42);
        const MYSIGNAL3: GlobalSignal<i32> = GlobalSignal::with_name(|| 42, "custom-keyed");

        let a = MYSIGNAL.key();
        let b = MYSIGNAL.key();
        let c = MYSIGNAL.key();
        assert_eq!(a, b);
        assert_eq!(b, c);

        let d = MYSIGNAL2.key();
        assert_ne!(a, d);

        let e = MYSIGNAL3.key();
        assert_ne!(a, e);
    }
}