dioxus_signals/
signal.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
use crate::{default_impl, fmt_impls, write_impls, Global};
use crate::{read::*, write::*, CopyValue, GlobalMemo, GlobalSignal, ReadableRef};
use crate::{Memo, WritableRef};
use dioxus_core::prelude::*;
use generational_box::{AnyStorage, BorrowResult, Storage, SyncStorage, UnsyncStorage};
use std::sync::Arc;
use std::{
    any::Any,
    collections::HashSet,
    ops::{Deref, DerefMut},
    sync::Mutex,
};

#[doc = include_str!("../docs/signals.md")]
#[doc(alias = "State")]
#[doc(alias = "UseState")]
#[doc(alias = "UseRef")]
pub struct Signal<T: 'static, S: Storage<SignalData<T>> = UnsyncStorage> {
    pub(crate) inner: CopyValue<SignalData<T>, S>,
}

/// A signal that can safely shared between threads.
#[doc(alias = "SendSignal")]
#[doc(alias = "UseRwLock")]
#[doc(alias = "UseRw")]
#[doc(alias = "UseMutex")]
pub type SyncSignal<T> = Signal<T, SyncStorage>;

/// The data stored for tracking in a signal.
pub struct SignalData<T> {
    pub(crate) subscribers: Arc<Mutex<HashSet<ReactiveContext>>>,
    pub(crate) value: T,
}

impl<T: 'static> Signal<T> {
    /// Creates a new [`Signal`]. Signals are a Copy state management solution with automatic dependency tracking.
    ///
    /// <div class="warning">
    ///
    /// This function should generally only be called inside hooks. The signal that this function creates is owned by the current component and will only be dropped when the component is dropped. If you call this function outside of a hook many times, you will leak memory until the component is dropped.
    ///
    /// ```rust
    /// # use dioxus::prelude::*;
    /// fn MyComponent() {
    ///     // ❌ Every time MyComponent runs, it will create a new signal that is only dropped when MyComponent is dropped
    ///     let signal = Signal::new(0);
    ///     use_context_provider(|| signal);
    ///     // ✅ Since the use_context_provider hook only runs when the component is created, the signal will only be created once and it will be dropped when MyComponent is dropped
    ///     let signal = use_context_provider(|| Signal::new(0));
    /// }
    /// ```
    ///
    /// </div>
    #[track_caller]
    pub fn new(value: T) -> Self {
        Self::new_maybe_sync(value)
    }

    /// Create a new signal with a custom owner scope. The signal will be dropped when the owner scope is dropped instead of the current scope.
    #[track_caller]
    pub fn new_in_scope(value: T, owner: ScopeId) -> Self {
        Self::new_maybe_sync_in_scope(value, owner)
    }

    /// Creates a new [`GlobalSignal`] that can be used anywhere inside your dioxus app. This signal will automatically be created once per app the first time you use it.
    ///
    /// # Example
    /// ```rust, no_run
    /// # use dioxus::prelude::*;
    /// // Create a new global signal that can be used anywhere in your app
    /// static SIGNAL: GlobalSignal<i32> = Signal::global(|| 0);
    ///
    /// fn App() -> Element {
    ///     rsx! {
    ///         button {
    ///             onclick: move |_| *SIGNAL.write() += 1,
    ///             "{SIGNAL}"
    ///         }
    ///     }
    /// }
    /// ```
    ///
    /// <div class="warning">
    ///
    /// Global signals are generally not recommended for use in libraries because it makes it more difficult to allow multiple instances of components you define in your library.
    ///
    /// </div>
    #[track_caller]
    pub const fn global(constructor: fn() -> T) -> GlobalSignal<T> {
        Global::new(constructor)
    }
}

impl<T: PartialEq + 'static> Signal<T> {
    /// Creates a new [`GlobalMemo`] that can be used anywhere inside your dioxus app. This memo will automatically be created once per app the first time you use it.
    ///
    /// # Example
    /// ```rust, no_run
    /// # use dioxus::prelude::*;
    /// static SIGNAL: GlobalSignal<i32> = Signal::global(|| 0);
    /// // Create a new global memo that can be used anywhere in your app
    /// static DOUBLED: GlobalMemo<i32> = Signal::global_memo(|| SIGNAL() * 2);
    ///
    /// fn App() -> Element {
    ///     rsx! {
    ///         button {
    ///             // When SIGNAL changes, the memo will update because the SIGNAL is read inside DOUBLED
    ///             onclick: move |_| *SIGNAL.write() += 1,
    ///             "{DOUBLED}"
    ///         }
    ///     }
    /// }
    /// ```
    ///
    /// <div class="warning">
    ///
    /// Global memos are generally not recommended for use in libraries because it makes it more difficult to allow multiple instances of components you define in your library.
    ///
    /// </div>
    #[track_caller]
    pub const fn global_memo(constructor: fn() -> T) -> GlobalMemo<T>
    where
        T: PartialEq,
    {
        GlobalMemo::new(constructor)
    }

    /// Creates a new unsync Selector. The selector will be run immediately and whenever any signal it reads changes.
    ///
    /// Selectors can be used to efficiently compute derived data from signals.
    #[track_caller]
    pub fn memo(f: impl FnMut() -> T + 'static) -> Memo<T> {
        Memo::new(f)
    }

    /// Creates a new unsync Selector with an explicit location. The selector will be run immediately and whenever any signal it reads changes.
    ///
    /// Selectors can be used to efficiently compute derived data from signals.
    pub fn memo_with_location(
        f: impl FnMut() -> T + 'static,
        location: &'static std::panic::Location<'static>,
    ) -> Memo<T> {
        Memo::new_with_location(f, location)
    }
}

impl<T: 'static, S: Storage<SignalData<T>>> Signal<T, S> {
    /// Creates a new Signal. Signals are a Copy state management solution with automatic dependency tracking.
    #[track_caller]
    #[tracing::instrument(skip(value))]
    pub fn new_maybe_sync(value: T) -> Self {
        Self {
            inner: CopyValue::<SignalData<T>, S>::new_maybe_sync(SignalData {
                subscribers: Default::default(),
                value,
            }),
        }
    }

    /// Creates a new Signal with an explicit caller. Signals are a Copy state management solution with automatic dependency tracking.
    ///
    /// This method can be used to provide the correct caller information for signals that are created in closures:
    ///
    /// ```rust
    /// # use dioxus::prelude::*;
    /// #[track_caller]
    /// fn use_my_signal(function: impl FnOnce() -> i32) -> Signal<i32> {
    ///     // We capture the caller information outside of the closure so that it points to the caller of use_my_custom_hook instead of the closure
    ///     let caller = std::panic::Location::caller();
    ///     use_hook(move || Signal::new_with_caller(function(), caller))
    /// }
    /// ```
    pub fn new_with_caller(value: T, caller: &'static std::panic::Location<'static>) -> Self {
        Self {
            inner: CopyValue::new_with_caller(
                SignalData {
                    subscribers: Default::default(),
                    value,
                },
                caller,
            ),
        }
    }

    /// Create a new Signal without an owner. This will leak memory if you don't manually drop it.
    pub fn leak_with_caller(value: T, caller: &'static std::panic::Location<'static>) -> Self {
        Self {
            inner: CopyValue::leak_with_caller(
                SignalData {
                    subscribers: Default::default(),
                    value,
                },
                caller,
            ),
        }
    }

    /// Create a new signal with a custom owner scope. The signal will be dropped when the owner scope is dropped instead of the current scope.
    #[track_caller]
    #[tracing::instrument(skip(value))]
    pub fn new_maybe_sync_in_scope(value: T, owner: ScopeId) -> Self {
        Self::new_maybe_sync_in_scope_with_caller(value, owner, std::panic::Location::caller())
    }

    /// Create a new signal with a custom owner scope and a custom caller. The signal will be dropped when the owner scope is dropped instead of the current scope.
    #[tracing::instrument(skip(value))]
    pub fn new_maybe_sync_in_scope_with_caller(
        value: T,
        owner: ScopeId,
        caller: &'static std::panic::Location<'static>,
    ) -> Self {
        Self {
            inner: CopyValue::<SignalData<T>, S>::new_maybe_sync_in_scope_with_caller(
                SignalData {
                    subscribers: Default::default(),
                    value,
                },
                owner,
                caller,
            ),
        }
    }

    /// Point to another signal. This will subscribe the other signal to all subscribers of this signal.
    pub fn point_to(&self, other: Self) -> BorrowResult {
        #[allow(clippy::mutable_key_type)]
        let this_subscribers = self.inner.value.read().subscribers.lock().unwrap().clone();
        let other_read = other.inner.value.read();
        for subscriber in this_subscribers.iter() {
            subscriber.subscribe(other_read.subscribers.clone());
        }
        self.inner.point_to(other.inner)
    }

    /// Drop the value out of the signal, invalidating the signal in the process.
    pub fn manually_drop(&self) {
        self.inner.manually_drop()
    }

    /// Get the scope the signal was created in.
    pub fn origin_scope(&self) -> ScopeId {
        self.inner.origin_scope()
    }

    fn update_subscribers(&self) {
        {
            let inner = self.inner.read();

            // We cannot hold the subscribers lock while calling mark_dirty, because mark_dirty can run user code which may cause a new subscriber to be added. If we hold the lock, we will deadlock.
            #[allow(clippy::mutable_key_type)]
            let mut subscribers = std::mem::take(&mut *inner.subscribers.lock().unwrap());
            subscribers.retain(|reactive_context| reactive_context.mark_dirty());
            // Extend the subscribers list instead of overwriting it in case a subscriber is added while reactive contexts are marked dirty
            inner.subscribers.lock().unwrap().extend(subscribers);
        }
    }

    /// Get the generational id of the signal.
    pub fn id(&self) -> generational_box::GenerationalBoxId {
        self.inner.id()
    }

    /// **This pattern is no longer recommended. Prefer [`peek`](Signal::peek) or creating new signals instead.**
    ///
    /// This function is the equivalent of the [write_silent](https://docs.rs/dioxus/latest/dioxus/prelude/struct.UseRef.html#method.write_silent) method on use_ref.
    ///
    /// ## What you should use instead
    ///
    /// ### Reading and Writing to data in the same scope
    ///
    /// Reading and writing to the same signal in the same scope will cause that scope to rerun forever:
    /// ```rust, no_run
    /// # use dioxus::prelude::*;
    /// let mut signal = use_signal(|| 0);
    /// // This makes the scope rerun whenever we write to the signal
    /// println!("{}", *signal.read());
    /// // This will rerun the scope because we read the signal earlier in the same scope
    /// *signal.write() += 1;
    /// ```
    ///
    /// You may have used the write_silent method to avoid this infinite loop with use_ref like this:
    /// ```rust, no_run
    /// # use dioxus::prelude::*;
    /// let signal = use_signal(|| 0);
    /// // This makes the scope rerun whenever we write to the signal
    /// println!("{}", *signal.read());
    /// // Write silent will not rerun any subscribers
    /// *signal.write_silent() += 1;
    /// ```
    ///
    /// Instead you can use the [`peek`](Signal::peek) and [`write`](Signal::write) methods instead. The peek method will not subscribe to the current scope which will avoid an infinite loop if you are reading and writing to the same signal in the same scope.
    /// ```rust, no_run
    /// # use dioxus::prelude::*;
    /// let mut signal = use_signal(|| 0);
    /// // Peek will read the value but not subscribe to the current scope
    /// println!("{}", *signal.peek());
    /// // Write will update any subscribers which does not include the current scope
    /// *signal.write() += 1;
    /// ```
    ///
    /// ### Reading and Writing to different data
    ///
    ///
    ///
    /// ## Why is this pattern no longer recommended?
    ///
    /// This pattern is no longer recommended because it is very easy to allow your state and UI to grow out of sync. `write_silent` globally opts out of automatic state updates which can be difficult to reason about.
    ///
    ///
    /// Lets take a look at an example:
    /// main.rs:
    /// ```rust, no_run
    /// # use dioxus::prelude::*;
    /// # fn Child() -> Element { unimplemented!() }
    /// fn app() -> Element {
    ///     let signal = use_context_provider(|| Signal::new(0));
    ///
    ///     // We want to log the value of the signal whenever the app component reruns
    ///     println!("{}", *signal.read());
    ///
    ///     rsx! {
    ///         button {
    ///             // If we don't want to rerun the app component when the button is clicked, we can use write_silent
    ///             onclick: move |_| *signal.write_silent() += 1,
    ///             "Increment"
    ///         }
    ///         Child {}
    ///     }
    /// }
    /// ```
    /// child.rs:
    /// ```rust, no_run
    /// # use dioxus::prelude::*;
    /// fn Child() -> Element {
    ///     let signal: Signal<i32> = use_context();
    ///
    ///     // It is difficult to tell that changing the button to use write_silent in the main.rs file will cause UI to be out of sync in a completely different file
    ///     rsx! {
    ///         "{signal}"
    ///     }
    /// }
    /// ```
    ///
    /// Instead [`peek`](Signal::peek) locally opts out of automatic state updates explicitly for a specific read which is easier to reason about.
    ///
    /// Here is the same example using peek:
    /// main.rs:
    /// ```rust, no_run
    /// # use dioxus::prelude::*;
    /// # fn Child() -> Element { unimplemented!() }
    /// fn app() -> Element {
    ///     let mut signal = use_context_provider(|| Signal::new(0));
    ///
    ///     // We want to log the value of the signal whenever the app component reruns, but we don't want to rerun the app component when the signal is updated so we use peek instead of read
    ///     println!("{}", *signal.peek());
    ///
    ///     rsx! {
    ///         button {
    ///             // We can use write like normal and update the child component automatically
    ///             onclick: move |_| *signal.write() += 1,
    ///             "Increment"
    ///         }
    ///         Child {}
    ///     }
    /// }
    /// ```
    /// child.rs:
    /// ```rust, no_run
    /// # use dioxus::prelude::*;
    /// fn Child() -> Element {
    ///     let signal: Signal<i32> = use_context();
    ///
    ///     rsx! {
    ///         "{signal}"
    ///     }
    /// }
    /// ```
    #[track_caller]
    #[deprecated = "This pattern is no longer recommended. Prefer `peek` or creating new signals instead."]
    pub fn write_silent(&self) -> S::Mut<'static, T> {
        S::map_mut(self.inner.write_unchecked(), |inner| &mut inner.value)
    }
}

impl<T, S: Storage<SignalData<T>>> Readable for Signal<T, S> {
    type Target = T;
    type Storage = S;

    #[track_caller]
    fn try_read_unchecked(&self) -> BorrowResult<ReadableRef<'static, Self>> {
        let inner = self.inner.try_read_unchecked()?;

        if let Some(reactive_context) = ReactiveContext::current() {
            tracing::trace!("Subscribing to the reactive context {}", reactive_context);
            reactive_context.subscribe(inner.subscribers.clone());
        }

        Ok(S::map(inner, |v| &v.value))
    }

    /// Get the current value of the signal. **Unlike read, this will not subscribe the current scope to the signal which can cause parts of your UI to not update.**
    ///
    /// If the signal has been dropped, this will panic.
    #[track_caller]
    fn try_peek_unchecked(&self) -> BorrowResult<ReadableRef<'static, Self>> {
        self.inner
            .try_read_unchecked()
            .map(|inner| S::map(inner, |v| &v.value))
    }
}

impl<T: 'static, S: Storage<SignalData<T>>> Writable for Signal<T, S> {
    type Mut<'a, R: ?Sized + 'static> = Write<'a, R, S>;

    fn map_mut<I: ?Sized, U: ?Sized + 'static, F: FnOnce(&mut I) -> &mut U>(
        ref_: Self::Mut<'_, I>,
        f: F,
    ) -> Self::Mut<'_, U> {
        Write::map(ref_, f)
    }

    fn try_map_mut<
        I: ?Sized + 'static,
        U: ?Sized + 'static,
        F: FnOnce(&mut I) -> Option<&mut U>,
    >(
        ref_: Self::Mut<'_, I>,
        f: F,
    ) -> Option<Self::Mut<'_, U>> {
        Write::filter_map(ref_, f)
    }

    fn downcast_lifetime_mut<'a: 'b, 'b, R: ?Sized + 'static>(
        mut_: Self::Mut<'a, R>,
    ) -> Self::Mut<'b, R> {
        Write::downcast_lifetime(mut_)
    }

    #[track_caller]
    fn try_write_unchecked(
        &self,
    ) -> Result<WritableRef<'static, Self>, generational_box::BorrowMutError> {
        #[cfg(debug_assertions)]
        let origin = std::panic::Location::caller();
        self.inner.try_write_unchecked().map(|inner| {
            let borrow = S::map_mut(inner, |v| &mut v.value);
            Write {
                write: borrow,
                drop_signal: Box::new(SignalSubscriberDrop {
                    signal: *self,
                    #[cfg(debug_assertions)]
                    origin,
                }),
            }
        })
    }
}

impl<T> IntoAttributeValue for Signal<T>
where
    T: Clone + IntoAttributeValue,
{
    fn into_value(self) -> dioxus_core::AttributeValue {
        self.with(|f| f.clone().into_value())
    }
}

impl<T> IntoDynNode for Signal<T>
where
    T: Clone + IntoDynNode,
{
    fn into_dyn_node(self) -> dioxus_core::DynamicNode {
        self().into_dyn_node()
    }
}

impl<T: 'static, S: Storage<SignalData<T>>> PartialEq for Signal<T, S> {
    fn eq(&self, other: &Self) -> bool {
        self.inner == other.inner
    }
}

impl<T: 'static, S: Storage<SignalData<T>>> Eq for Signal<T, S> {}

/// Allow calling a signal with signal() syntax
///
/// Currently only limited to copy types, though could probably specialize for string/arc/rc
impl<T: Clone, S: Storage<SignalData<T>> + 'static> Deref for Signal<T, S> {
    type Target = dyn Fn() -> T;

    fn deref(&self) -> &Self::Target {
        unsafe { Readable::deref_impl(self) }
    }
}

#[cfg(feature = "serialize")]
impl<T: serde::Serialize + 'static, Store: Storage<SignalData<T>>> serde::Serialize
    for Signal<T, Store>
{
    fn serialize<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        self.read().serialize(serializer)
    }
}

#[cfg(feature = "serialize")]
impl<'de, T: serde::Deserialize<'de> + 'static, Store: Storage<SignalData<T>>>
    serde::Deserialize<'de> for Signal<T, Store>
{
    fn deserialize<D: serde::Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
        Ok(Self::new_maybe_sync(T::deserialize(deserializer)?))
    }
}

/// A mutable reference to a signal's value. This reference acts similarly to [`std::cell::RefMut`], but it has extra debug information
/// and integrates with the reactive system to automatically update dependents.
///
/// [`Write`] implements [`DerefMut`] which means you can call methods on the inner value just like you would on a mutable reference
/// to the inner value. If you need to get the inner reference directly, you can call [`Write::deref_mut`].
///
/// # Example
/// ```rust
/// # use dioxus::prelude::*;
/// fn app() -> Element {
///     let mut value = use_signal(|| String::from("hello"));
///     
///     rsx! {
///         button {
///             onclick: move |_| {
///                 let mut mutable_reference = value.write();
///
///                 // You call methods like `push_str` on the reference just like you would with the inner String
///                 mutable_reference.push_str("world");
///             },
///             "Click to add world to the string"
///         }
///         div { "{value}" }
///     }
/// }
/// ```
///
/// ## Matching on Write
///
/// You need to get the inner mutable reference with [`Write::deref_mut`] before you match the inner value. If you try to match
/// without calling [`Write::deref_mut`], you will get an error like this:
///
/// ```compile_fail
/// # use dioxus::prelude::*;
/// #[derive(Debug)]
/// enum Colors {
///     Red(u32),
///     Green
/// }
/// fn app() -> Element {
///     let mut value = use_signal(|| Colors::Red(0));
///
///     rsx! {
///         button {
///             onclick: move |_| {
///                 let mut mutable_reference = value.write();
///
///                 match mutable_reference {
///                     // Since we are matching on the `Write` type instead of &mut Colors, we can't match on the enum directly
///                     Colors::Red(brightness) => *brightness += 1,
///                     Colors::Green => {}
///                 }
///             },
///             "Click to add brightness to the red color"
///         }
///         div { "{value:?}" }
///     }
/// }
/// ```
///
/// ```text
/// error[E0308]: mismatched types
///   --> src/main.rs:18:21
///    |
/// 16 |                 match mutable_reference {
///    |                       ----------------- this expression has type `dioxus::prelude::Write<'_, Colors>`
/// 17 |                     // Since we are matching on the `Write` t...
/// 18 |                     Colors::Red(brightness) => *brightness += 1,
///    |                     ^^^^^^^^^^^^^^^^^^^^^^^ expected `Write<'_, Colors>`, found `Colors`
///    |
///    = note: expected struct `dioxus::prelude::Write<'_, Colors, >`
///                found enum `Colors`
/// ```
///
/// Instead, you need to call deref mut on the reference to get the inner value **before** you match on it:
///
/// ```rust
/// use std::ops::DerefMut;
/// # use dioxus::prelude::*;
/// #[derive(Debug)]
/// enum Colors {
///     Red(u32),
///     Green
/// }
/// fn app() -> Element {
///     let mut value = use_signal(|| Colors::Red(0));
///
///     rsx! {
///         button {
///             onclick: move |_| {
///                 let mut mutable_reference = value.write();
///
///                 // DerefMut converts the `Write` into a `&mut Colors`
///                 match mutable_reference.deref_mut() {
///                     // Now we can match on the inner value
///                     Colors::Red(brightness) => *brightness += 1,
///                     Colors::Green => {}
///                 }
///             },
///             "Click to add brightness to the red color"
///         }
///         div { "{value:?}" }
///     }
/// }
/// ```
///
/// ## Generics
/// - T is the current type of the write
/// - S is the storage type of the signal. This type determines if the signal is local to the current thread, or it can be shared across threads.
pub struct Write<'a, T: ?Sized + 'static, S: AnyStorage = UnsyncStorage> {
    write: S::Mut<'a, T>,
    drop_signal: Box<dyn Any>,
}

impl<'a, T: ?Sized + 'static, S: AnyStorage> Write<'a, T, S> {
    /// Map the mutable reference to the signal's value to a new type.
    pub fn map<O: ?Sized>(myself: Self, f: impl FnOnce(&mut T) -> &mut O) -> Write<'a, O, S> {
        let Self {
            write, drop_signal, ..
        } = myself;
        Write {
            write: S::map_mut(write, f),
            drop_signal,
        }
    }

    /// Try to map the mutable reference to the signal's value to a new type
    pub fn filter_map<O: ?Sized>(
        myself: Self,
        f: impl FnOnce(&mut T) -> Option<&mut O>,
    ) -> Option<Write<'a, O, S>> {
        let Self {
            write, drop_signal, ..
        } = myself;
        let write = S::try_map_mut(write, f);
        write.map(|write| Write { write, drop_signal })
    }

    /// Downcast the lifetime of the mutable reference to the signal's value.
    ///
    /// This function enforces the variance of the lifetime parameter `'a` in Mut.  Rust will typically infer this cast with a concrete type, but it cannot with a generic type.
    pub fn downcast_lifetime<'b>(mut_: Self) -> Write<'b, T, S>
    where
        'a: 'b,
    {
        Write {
            write: S::downcast_lifetime_mut(mut_.write),
            drop_signal: mut_.drop_signal,
        }
    }
}

impl<T: ?Sized + 'static, S: AnyStorage> Deref for Write<'_, T, S> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        &self.write
    }
}

impl<T: ?Sized, S: AnyStorage> DerefMut for Write<'_, T, S> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.write
    }
}

struct SignalSubscriberDrop<T: 'static, S: Storage<SignalData<T>>> {
    signal: Signal<T, S>,
    #[cfg(debug_assertions)]
    origin: &'static std::panic::Location<'static>,
}

#[allow(clippy::no_effect)]
impl<T: 'static, S: Storage<SignalData<T>>> Drop for SignalSubscriberDrop<T, S> {
    fn drop(&mut self) {
        #[cfg(debug_assertions)]
        {
            tracing::trace!(
                "Write on signal at {} finished, updating subscribers",
                self.origin
            );
            crate::warnings::signal_write_in_component_body(self.origin);
            crate::warnings::signal_read_and_write_in_reactive_scope::<T, S>(
                self.origin,
                self.signal,
            );
        }
        self.signal.update_subscribers();
    }
}

fmt_impls!(Signal<T, S: Storage<SignalData<T>>>);
default_impl!(Signal<T, S: Storage<SignalData<T>>>);
write_impls!(Signal<T, S: Storage<SignalData<T>>>);

impl<T: 'static, S: Storage<SignalData<T>>> Clone for Signal<T, S> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<T: 'static, S: Storage<SignalData<T>>> Copy for Signal<T, S> {}