dioxus_signals/read.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
use std::{mem::MaybeUninit, ops::Index, rc::Rc};
use generational_box::AnyStorage;
use crate::MappedSignal;
/// A reference to a value that can be read from.
#[allow(type_alias_bounds)]
pub type ReadableRef<'a, T: Readable, O = <T as Readable>::Target> =
<T::Storage as AnyStorage>::Ref<'a, O>;
/// A trait for states that can be read from like [`crate::Signal`], [`crate::GlobalSignal`], or [`crate::ReadOnlySignal`]. You may choose to accept this trait as a parameter instead of the concrete type to allow for more flexibility in your API. For example, instead of creating two functions, one that accepts a [`crate::Signal`] and one that accepts a [`crate::GlobalSignal`], you can create one function that accepts a [`Readable`] type.
///
/// # Example
/// ```rust
/// # use dioxus::prelude::*;
/// fn double(something_readable: &impl Readable<Target = i32>) -> i32 {
/// something_readable.cloned() * 2
/// }
///
/// static COUNT: GlobalSignal<i32> = Signal::global(|| 0);
///
/// fn MyComponent(count: Signal<i32>) -> Element {
/// // Since we defined the function in terms of the readable trait, we can use it with any readable type (Signal, GlobalSignal, ReadOnlySignal, etc)
/// let doubled = use_memo(move || double(&count));
/// let global_count_doubled = use_memo(|| double(&COUNT));
/// rsx! {
/// div {
/// "Count local: {count}"
/// "Doubled local: {doubled}"
/// "Count global: {COUNT}"
/// "Doubled global: {global_count_doubled}"
/// }
/// }
/// }
/// ```
pub trait Readable {
/// The target type of the reference.
type Target: ?Sized + 'static;
/// The type of the storage this readable uses.
type Storage: AnyStorage;
/// Map the readable type to a new type. This lets you provide a view into a readable type without needing to clone the inner value.
///
/// Anything that subscribes to the readable value will be rerun whenever the original value changes, even if the view does not change. If you want to memorize the view, you can use a [`crate::Memo`] instead.
///
/// # Example
/// ```rust
/// # use dioxus::prelude::*;
/// fn List(list: Signal<Vec<i32>>) -> Element {
/// rsx! {
/// for index in 0..list.len() {
/// // We can use the `map` method to provide a view into the single item in the list that the child component will render
/// Item { item: list.map(move |v| &v[index]) }
/// }
/// }
/// }
///
/// // The child component doesn't need to know that the mapped value is coming from a list
/// #[component]
/// fn Item(item: MappedSignal<i32>) -> Element {
/// rsx! {
/// div { "Item: {item}" }
/// }
/// }
/// ```
fn map<O>(self, f: impl Fn(&Self::Target) -> &O + 'static) -> MappedSignal<O, Self::Storage>
where
Self: Clone + Sized + 'static,
{
let mapping = Rc::new(f);
let try_read = Rc::new({
let self_ = self.clone();
let mapping = mapping.clone();
move || {
self_
.try_read_unchecked()
.map(|ref_| <Self::Storage as AnyStorage>::map(ref_, |r| mapping(r)))
}
})
as Rc<
dyn Fn() -> Result<ReadableRef<'static, Self, O>, generational_box::BorrowError>
+ 'static,
>;
let try_peek = Rc::new({
let self_ = self.clone();
let mapping = mapping.clone();
move || {
self_
.try_peek_unchecked()
.map(|ref_| <Self::Storage as AnyStorage>::map(ref_, |r| mapping(r)))
}
})
as Rc<
dyn Fn() -> Result<ReadableRef<'static, Self, O>, generational_box::BorrowError>
+ 'static,
>;
MappedSignal::new(try_read, try_peek)
}
/// Get the current value of the state. If this is a signal, this will subscribe the current scope to the signal.
/// If the value has been dropped, this will panic. Calling this on a Signal is the same as
/// using the signal() syntax to read and subscribe to its value
#[track_caller]
fn read(&self) -> ReadableRef<Self> {
self.try_read().unwrap()
}
/// Try to get the current value of the state. If this is a signal, this will subscribe the current scope to the signal.
#[track_caller]
fn try_read(&self) -> Result<ReadableRef<Self>, generational_box::BorrowError> {
self.try_read_unchecked()
.map(Self::Storage::downcast_lifetime_ref)
}
/// Get a reference to the value without checking the lifetime. This will subscribe the current scope to the signal.
///
/// NOTE: This method is completely safe because borrow checking is done at runtime.
#[track_caller]
fn read_unchecked(&self) -> ReadableRef<'static, Self> {
self.try_read_unchecked().unwrap()
}
/// Try to get a reference to the value without checking the lifetime. This will subscribe the current scope to the signal.
///
/// NOTE: This method is completely safe because borrow checking is done at runtime.
fn try_read_unchecked(
&self,
) -> Result<ReadableRef<'static, Self>, generational_box::BorrowError>;
/// Get the current value of the state without subscribing to updates. If the value has been dropped, this will panic.
///
/// # Example
/// ```rust
/// # use dioxus::prelude::*;
/// fn MyComponent(mut count: Signal<i32>) -> Element {
/// let mut event_source = use_signal(|| None);
/// let doubled = use_memo(move || {
/// // We want to log the value of the event_source, but we don't need to rerun the doubled value if the event_source changes (because the value of doubled doesn't depend on the event_source)
/// // We can read the value with peek without subscribing to updates
/// let source = event_source.peek();
/// tracing::info!("Clicked: {source:?}");
/// count() * 2
/// });
/// rsx! {
/// div { "Count: {count}" }
/// div { "Doubled: {doubled}" }
/// button {
/// onclick: move |_| {
/// event_source.set(Some("Click me button"));
/// count += 1;
/// },
/// "Click me"
/// }
/// button {
/// onclick: move |_| {
/// event_source.set(Some("Double me button"));
/// count += 1;
/// },
/// "Double me"
/// }
/// }
/// }
/// ```
#[track_caller]
fn peek(&self) -> ReadableRef<Self> {
Self::Storage::downcast_lifetime_ref(self.peek_unchecked())
}
/// Try to peek the current value of the signal without subscribing to updates. If the value has
/// been dropped, this will return an error.
#[track_caller]
fn try_peek(&self) -> Result<ReadableRef<Self>, generational_box::BorrowError> {
self.try_peek_unchecked()
.map(Self::Storage::downcast_lifetime_ref)
}
/// Get the current value of the signal without checking the lifetime. **Unlike read, this will not subscribe the current scope to the signal which can cause parts of your UI to not update.**
///
/// If the signal has been dropped, this will panic.
#[track_caller]
fn peek_unchecked(&self) -> ReadableRef<'static, Self> {
self.try_peek_unchecked().unwrap()
}
/// Try to peek the current value of the signal without subscribing to updates. If the value has
/// been dropped, this will return an error.
///
/// NOTE: This method is completely safe because borrow checking is done at runtime.
fn try_peek_unchecked(
&self,
) -> Result<ReadableRef<'static, Self>, generational_box::BorrowError>;
/// Clone the inner value and return it. If the value has been dropped, this will panic.
#[track_caller]
fn cloned(&self) -> Self::Target
where
Self::Target: Clone,
{
self.read().clone()
}
/// Run a function with a reference to the value. If the value has been dropped, this will panic.
#[track_caller]
fn with<O>(&self, f: impl FnOnce(&Self::Target) -> O) -> O {
f(&*self.read())
}
/// Run a function with a reference to the value. If the value has been dropped, this will panic.
#[track_caller]
fn with_peek<O>(&self, f: impl FnOnce(&Self::Target) -> O) -> O {
f(&*self.peek())
}
/// Index into the inner value and return a reference to the result. If the value has been dropped or the index is invalid, this will panic.
#[track_caller]
fn index<I>(&self, index: I) -> ReadableRef<Self, <Self::Target as std::ops::Index<I>>::Output>
where
Self::Target: std::ops::Index<I>,
{
<Self::Storage as AnyStorage>::map(self.read(), |v| v.index(index))
}
/// SAFETY: You must call this function directly with `self` as the argument.
/// This function relies on the size of the object you return from the deref
/// being the same as the object you pass in
#[doc(hidden)]
unsafe fn deref_impl<'a>(&self) -> &'a dyn Fn() -> Self::Target
where
Self: Sized + 'a,
Self::Target: Clone,
{
// https://github.com/dtolnay/case-studies/tree/master/callable-types
// First we create a closure that captures something with the Same in memory layout as Self (MaybeUninit<Self>).
let uninit_callable = MaybeUninit::<Self>::uninit();
// Then move that value into the closure. We assume that the closure now has a in memory layout of Self.
let uninit_closure = move || Self::read(unsafe { &*uninit_callable.as_ptr() }).clone();
// Check that the size of the closure is the same as the size of Self in case the compiler changed the layout of the closure.
let size_of_closure = std::mem::size_of_val(&uninit_closure);
assert_eq!(size_of_closure, std::mem::size_of::<Self>());
// Then cast the lifetime of the closure to the lifetime of &self.
fn cast_lifetime<'a, T>(_a: &T, b: &'a T) -> &'a T {
b
}
let reference_to_closure = cast_lifetime(
{
// The real closure that we will never use.
&uninit_closure
},
#[allow(clippy::missing_transmute_annotations)]
// We transmute self into a reference to the closure. This is safe because we know that the closure has the same memory layout as Self so &Closure == &Self.
unsafe {
std::mem::transmute(self)
},
);
// Cast the closure to a trait object.
reference_to_closure as &_
}
}
/// An extension trait for Readable<Vec<T>> that provides some convenience methods.
pub trait ReadableVecExt<T: 'static>: Readable<Target = Vec<T>> {
/// Returns the length of the inner vector.
#[track_caller]
fn len(&self) -> usize {
self.with(|v| v.len())
}
/// Returns true if the inner vector is empty.
#[track_caller]
fn is_empty(&self) -> bool {
self.with(|v| v.is_empty())
}
/// Get the first element of the inner vector.
#[track_caller]
fn first(&self) -> Option<ReadableRef<Self, T>> {
<Self::Storage as AnyStorage>::try_map(self.read(), |v| v.first())
}
/// Get the last element of the inner vector.
#[track_caller]
fn last(&self) -> Option<ReadableRef<Self, T>> {
<Self::Storage as AnyStorage>::try_map(self.read(), |v| v.last())
}
/// Get the element at the given index of the inner vector.
#[track_caller]
fn get(&self, index: usize) -> Option<ReadableRef<Self, T>> {
<Self::Storage as AnyStorage>::try_map(self.read(), |v| v.get(index))
}
/// Get an iterator over the values of the inner vector.
#[track_caller]
fn iter(&self) -> ReadableValueIterator<'_, Self>
where
Self: Sized,
{
ReadableValueIterator {
index: 0,
value: self,
}
}
}
/// An iterator over the values of a `Readable<Vec<T>>`.
pub struct ReadableValueIterator<'a, R> {
index: usize,
value: &'a R,
}
impl<'a, T: 'static, R: Readable<Target = Vec<T>>> Iterator for ReadableValueIterator<'a, R> {
type Item = ReadableRef<'a, R, T>;
fn next(&mut self) -> Option<Self::Item> {
let index = self.index;
self.index += 1;
self.value.get(index)
}
}
impl<T, R> ReadableVecExt<T> for R
where
T: 'static,
R: Readable<Target = Vec<T>>,
{
}
/// An extension trait for Readable<Option<T>> that provides some convenience methods.
pub trait ReadableOptionExt<T: 'static>: Readable<Target = Option<T>> {
/// Unwraps the inner value and clones it.
#[track_caller]
fn unwrap(&self) -> T
where
T: Clone,
{
self.as_ref().unwrap().clone()
}
/// Attempts to read the inner value of the Option.
#[track_caller]
fn as_ref(&self) -> Option<ReadableRef<Self, T>> {
<Self::Storage as AnyStorage>::try_map(self.read(), |v| v.as_ref())
}
}
impl<T, R> ReadableOptionExt<T> for R
where
T: 'static,
R: Readable<Target = Option<T>>,
{
}
/// An extension trait for Readable<Option<T>> that provides some convenience methods.
pub trait ReadableResultExt<T: 'static, E: 'static>: Readable<Target = Result<T, E>> {
/// Unwraps the inner value and clones it.
#[track_caller]
fn unwrap(&self) -> T
where
T: Clone,
{
self.as_ref()
.unwrap_or_else(|_| panic!("Tried to unwrap a Result that was an error"))
.clone()
}
/// Attempts to read the inner value of the Option.
#[track_caller]
fn as_ref(&self) -> Result<ReadableRef<Self, T>, ReadableRef<Self, E>> {
<Self::Storage as AnyStorage>::try_map(self.read(), |v| v.as_ref().ok()).ok_or(
<Self::Storage as AnyStorage>::map(self.read(), |v| v.as_ref().err().unwrap()),
)
}
}
impl<T, E, R> ReadableResultExt<T, E> for R
where
T: 'static,
E: 'static,
R: Readable<Target = Result<T, E>>,
{
}