Crate docopt [−] [src]
Docopt for Rust. This implementation conforms to the official description of Docopt and passes its test suite.
This library is on GitHub.
Fundamentally, Docopt is a command line argument parser. The detail that distinguishes it from most parsers is that the parser is derived from the usage string. Here's a simple example:
use docopt::Docopt; // Write the Docopt usage string. const USAGE: &'static str = " Usage: cp [-a] <source> <dest> cp [-a] <source>... <dir> Options: -a, --archive Copy everything. "; // The argv. Normally you'd just use `parse` which will automatically // use `std::env::args()`. let argv = || vec!["cp", "-a", "file1", "file2", "dest/"]; // Parse argv and exit the program with an error message if it fails. let args = Docopt::new(USAGE) .and_then(|d| d.argv(argv().into_iter()).parse()) .unwrap_or_else(|e| e.exit()); // Now access your argv values. Synonyms work just fine! assert!(args.get_bool("-a") && args.get_bool("--archive")); assert_eq!(args.get_vec("<source>"), vec!["file1", "file2"]); assert_eq!(args.get_str("<dir>"), "dest/"); assert_eq!(args.get_str("<dest>"), "");Run
Type based decoding
Often, command line values aren't just strings or booleans---sometimes
they are integers, or enums, or something more elaborate. Using the
standard Docopt interface can be inconvenient for this purpose, because
you'll need to convert all of the values explicitly. Instead, this crate
provides a Decoder
that converts an ArgvMap
to your custom struct.
Here is the same example as above using type based decoding:
use docopt::Docopt; // Write the Docopt usage string. const USAGE: &'static str = " Usage: cp [-a] <source> <dest> cp [-a] <source>... <dir> Options: -a, --archive Copy everything. "; #[derive(RustcDecodable)] struct Args { arg_source: Vec<String>, arg_dest: String, arg_dir: String, flag_archive: bool, } let argv = || vec!["cp", "-a", "file1", "file2", "dest/"]; let args: Args = Docopt::new(USAGE) .and_then(|d| d.argv(argv().into_iter()).decode()) .unwrap_or_else(|e| e.exit()); // Now access your argv values. fn s(x: &str) -> String { x.to_string() } assert!(args.flag_archive); assert_eq!(args.arg_source, vec![s("file1"), s("file2")]); assert_eq!(args.arg_dir, s("dest/")); assert_eq!(args.arg_dest, s(""));Run
Command line arguments for rustc
Here's an example with a subset of rustc
's command line arguments that
shows more of Docopt and some of the benefits of type based decoding.
use docopt::Docopt; // Write the Docopt usage string. const USAGE: &'static str = " Usage: rustc [options] [--cfg SPEC... -L PATH...] INPUT rustc (--help | --version) Options: -h, --help Show this message. --version Show the version of rustc. --cfg SPEC Configure the compilation environment. -L PATH Add a directory to the library search path. --emit TYPE Configure the output that rustc will produce. Valid values: asm, ir, bc, obj, link. --opt-level LEVEL Optimize with possible levels 0-3. "; #[derive(RustcDecodable)] struct Args { arg_INPUT: String, flag_emit: Option<Emit>, flag_opt_level: Option<OptLevel>, flag_cfg: Vec<String>, flag_L: Vec<String>, flag_help: bool, flag_version: bool, } // This is easy. The decoder will automatically restrict values to // strings that match one of the enum variants. #[derive(RustcDecodable)] enum Emit { Asm, Ir, Bc, Obj, Link } // This one is harder because we want the user to specify an integer, // but restrict it to a specific range. So we implement `Decodable` // ourselves. enum OptLevel { Zero, One, Two, Three } impl rustc_serialize::Decodable for OptLevel { fn decode<D: rustc_serialize::Decoder>(d: &mut D) -> Result<OptLevel, D::Error> { Ok(match try!(d.read_usize()) { 0 => OptLevel::Zero, 1 => OptLevel::One, 2 => OptLevel::Two, 3 => OptLevel::Three, n => { let err = format!( "Could not decode '{}' as opt-level.", n); return Err(d.error(&*err)); } }) } } let argv = || vec!["rustc", "-L", ".", "-L", "..", "--cfg", "a", "--opt-level", "2", "--emit=ir", "docopt.rs"]; let args: Args = Docopt::new(USAGE) .and_then(|d| d.argv(argv().into_iter()).decode()) .unwrap_or_else(|e| e.exit()); // Now access your argv values. fn s(x: &str) -> String { x.to_string() } assert_eq!(args.arg_INPUT, "docopt.rs".to_string()); assert_eq!(args.flag_L, vec![s("."), s("..")]); assert_eq!(args.flag_cfg, vec![s("a")]); assert_eq!(args.flag_opt_level, Some(OptLevel::Two)); assert_eq!(args.flag_emit, Some(Emit::Ir));Run
The docopt!
macro
This package comes bundled with an additional crate, docopt_macros
,
which provides a docopt!
syntax extension. Its purpose is to automate
the creation of a Rust struct from a Docopt usage string. In particular,
this provides a single point of truth about the definition of command line
arguments in your program.
Another advantage of using the macro is that errors in your Docopt usage string will be caught at compile time. Stated differently, your program will not compile with an invalid Docopt usage string.
The example above using type based decoding can be simplified to this:
#![feature(plugin)] #![plugin(docopt_macros)] extern crate rustc_serialize; extern crate docopt; // Write the Docopt usage string with the `docopt!` macro. docopt!(Args, " Usage: cp [-a] <source> <dest> cp [-a] <source>... <dir> Options: -a, --archive Copy everything. ") fn main() { let argv = || vec!["cp", "-a", "file1", "file2", "dest/"]; // Your `Args` struct has a single static method defined on it, // `docopt`, which will return a normal `Docopt` value. let args: Args = Args::docopt().decode().unwrap_or_else(|e| e.exit()); // Now access your argv values. fn s(x: &str) -> String { x.to_string() } assert!(args.flag_archive); assert_eq!(args.arg_source, vec![s("file1"), s("file2")]); assert_eq!(args.arg_dir, s("dest/")); assert_eq!(args.arg_dest, s("")); }Run
Structs
ArgvMap |
A map containing matched values from command line arguments. |
Decoder |
Decoder for |
Docopt |
The main Docopt type, which is constructed with a Docopt usage string. |
Enums
Error |
Represents the different types of Docopt errors. |
Value |
A matched command line value. |