dusk_wasmtime/runtime/types.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
use anyhow::{bail, Result};
use std::fmt::{self, Display};
use wasmtime_environ::{
EngineOrModuleTypeIndex, EntityType, Global, Memory, ModuleTypes, Table, TypeTrace,
WasmFuncType, WasmHeapType, WasmRefType, WasmValType,
};
use wasmtime_runtime::VMSharedTypeIndex;
use crate::{type_registry::RegisteredType, Engine};
pub(crate) mod matching;
// Type Representations
// Type attributes
/// Indicator of whether a global is mutable or not
#[derive(Debug, Clone, Copy, Hash, Eq, PartialEq)]
pub enum Mutability {
/// The global is constant and its value does not change
Const,
/// The value of the global can change over time
Var,
}
// Value Types
/// A list of all possible value types in WebAssembly.
///
/// # Subtyping and Equality
///
/// `ValType` does not implement `Eq`, because reference types have a subtyping
/// relationship, and so 99.99% of the time you actually want to check whether
/// one type matches (i.e. is a subtype of) another type. You can use the
/// [`ValType::matches`] and [`Val::matches_ty`][crate::Val::matches_ty] methods
/// to perform these types of checks. If, however, you are in that 0.01%
/// scenario where you need to check precise equality between types, you can use
/// the [`ValType::eq`] method.
#[derive(Clone, Hash)]
pub enum ValType {
// NB: the ordering of variants here is intended to match the ordering in
// `wasmtime_types::WasmType` to help improve codegen when converting.
//
/// Signed 32 bit integer.
I32,
/// Signed 64 bit integer.
I64,
/// Floating point 32 bit integer.
F32,
/// Floating point 64 bit integer.
F64,
/// A 128 bit number.
V128,
/// An opaque reference to some type on the heap.
Ref(RefType),
}
impl fmt::Debug for ValType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(self, f)
}
}
impl Display for ValType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
ValType::I32 => write!(f, "i32"),
ValType::I64 => write!(f, "i64"),
ValType::F32 => write!(f, "f32"),
ValType::F64 => write!(f, "f64"),
ValType::V128 => write!(f, "v128"),
ValType::Ref(r) => Display::fmt(r, f),
}
}
}
impl From<RefType> for ValType {
#[inline]
fn from(r: RefType) -> Self {
ValType::Ref(r)
}
}
impl ValType {
/// The `externref` type, aka `(ref null extern)`.
pub const EXTERNREF: Self = ValType::Ref(RefType::EXTERNREF);
/// The `funcref` type, aka `(ref null func)`.
pub const FUNCREF: Self = ValType::Ref(RefType::FUNCREF);
/// The `nullfuncref` type, aka `(ref null nofunc)`.
pub const NULLFUNCREF: Self = ValType::Ref(RefType::NULLFUNCREF);
/// The `anyref` type, aka `(ref null any)`.
pub const ANYREF: Self = ValType::Ref(RefType::ANYREF);
/// The `i31ref` type, aka `(ref null i31)`.
pub const I31REF: Self = ValType::Ref(RefType::I31REF);
/// The `nullref` type, aka `(ref null none)`.
pub const NULLREF: Self = ValType::Ref(RefType::NULLREF);
/// Returns true if `ValType` matches any of the numeric types. (e.g. `I32`,
/// `I64`, `F32`, `F64`).
#[inline]
pub fn is_num(&self) -> bool {
match self {
ValType::I32 | ValType::I64 | ValType::F32 | ValType::F64 => true,
_ => false,
}
}
/// Is this the `i32` type?
#[inline]
pub fn is_i32(&self) -> bool {
matches!(self, ValType::I32)
}
/// Is this the `i64` type?
#[inline]
pub fn is_i64(&self) -> bool {
matches!(self, ValType::I64)
}
/// Is this the `f32` type?
#[inline]
pub fn is_f32(&self) -> bool {
matches!(self, ValType::F32)
}
/// Is this the `f64` type?
#[inline]
pub fn is_f64(&self) -> bool {
matches!(self, ValType::F64)
}
/// Is this the `v128` type?
#[inline]
pub fn is_v128(&self) -> bool {
matches!(self, ValType::V128)
}
/// Returns true if `ValType` is any kind of reference type.
#[inline]
pub fn is_ref(&self) -> bool {
matches!(self, ValType::Ref(_))
}
/// Is this the `funcref` (aka `(ref null func)`) type?
#[inline]
pub fn is_funcref(&self) -> bool {
matches!(
self,
ValType::Ref(RefType {
is_nullable: true,
heap_type: HeapType::Func
})
)
}
/// Is this the `externref` (aka `(ref null extern)`) type?
#[inline]
pub fn is_externref(&self) -> bool {
matches!(
self,
ValType::Ref(RefType {
is_nullable: true,
heap_type: HeapType::Extern
})
)
}
/// Is this the `anyref` (aka `(ref null any)`) type?
#[inline]
pub fn is_anyref(&self) -> bool {
matches!(
self,
ValType::Ref(RefType {
is_nullable: true,
heap_type: HeapType::Any
})
)
}
/// Get the underlying reference type, if this value type is a reference
/// type.
#[inline]
pub fn as_ref(&self) -> Option<&RefType> {
match self {
ValType::Ref(r) => Some(r),
_ => None,
}
}
/// Get the underlying reference type, panicking if this value type is not a
/// reference type.
#[inline]
pub fn unwrap_ref(&self) -> &RefType {
self.as_ref()
.expect("ValType::unwrap_ref on a non-reference type")
}
/// Does this value type match the other type?
///
/// That is, is this value type a subtype of the other?
///
/// # Panics
///
/// Panics if either type is associated with a different engine from the
/// other.
pub fn matches(&self, other: &ValType) -> bool {
match (self, other) {
(Self::I32, Self::I32) => true,
(Self::I64, Self::I64) => true,
(Self::F32, Self::F32) => true,
(Self::F64, Self::F64) => true,
(Self::V128, Self::V128) => true,
(Self::Ref(a), Self::Ref(b)) => a.matches(b),
(Self::I32, _)
| (Self::I64, _)
| (Self::F32, _)
| (Self::F64, _)
| (Self::V128, _)
| (Self::Ref(_), _) => false,
}
}
/// Is value type `a` precisely equal to value type `b`?
///
/// Returns `false` even if `a` is a subtype of `b` or vice versa, if they
/// are not exactly the same value type.
///
/// # Panics
///
/// Panics if either type is associated with a different engine.
pub fn eq(a: &Self, b: &Self) -> bool {
a.matches(b) && b.matches(a)
}
pub(crate) fn ensure_matches(&self, engine: &Engine, other: &ValType) -> Result<()> {
if !self.comes_from_same_engine(engine) || !other.comes_from_same_engine(engine) {
bail!("type used with wrong engine");
}
if self.matches(other) {
Ok(())
} else {
bail!("type mismatch: expected {other}, found {self}")
}
}
pub(crate) fn comes_from_same_engine(&self, engine: &Engine) -> bool {
match self {
Self::I32 | Self::I64 | Self::F32 | Self::F64 | Self::V128 => true,
Self::Ref(r) => r.comes_from_same_engine(engine),
}
}
pub(crate) fn to_wasm_type(&self) -> WasmValType {
match self {
Self::I32 => WasmValType::I32,
Self::I64 => WasmValType::I64,
Self::F32 => WasmValType::F32,
Self::F64 => WasmValType::F64,
Self::V128 => WasmValType::V128,
Self::Ref(r) => WasmValType::Ref(r.to_wasm_type()),
}
}
#[inline]
pub(crate) fn from_wasm_type(engine: &Engine, ty: &WasmValType) -> Self {
match ty {
WasmValType::I32 => Self::I32,
WasmValType::I64 => Self::I64,
WasmValType::F32 => Self::F32,
WasmValType::F64 => Self::F64,
WasmValType::V128 => Self::V128,
WasmValType::Ref(r) => Self::Ref(RefType::from_wasm_type(engine, r)),
}
}
}
/// Opaque references to data in the Wasm heap or to host data.
///
/// # Subtyping and Equality
///
/// `RefType` does not implement `Eq`, because reference types have a subtyping
/// relationship, and so 99.99% of the time you actually want to check whether
/// one type matches (i.e. is a subtype of) another type. You can use the
/// [`RefType::matches`] and [`Ref::matches_ty`][crate::Ref::matches_ty] methods
/// to perform these types of checks. If, however, you are in that 0.01%
/// scenario where you need to check precise equality between types, you can use
/// the [`RefType::eq`] method.
#[derive(Clone, Hash)]
pub struct RefType {
is_nullable: bool,
heap_type: HeapType,
}
impl fmt::Debug for RefType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
Display::fmt(self, f)
}
}
impl fmt::Display for RefType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "(ref ")?;
if self.is_nullable() {
write!(f, "null ")?;
}
write!(f, "{})", self.heap_type())
}
}
impl RefType {
/// The `externref` type, aka `(ref null extern)`.
pub const EXTERNREF: Self = RefType {
is_nullable: true,
heap_type: HeapType::Extern,
};
/// The `funcref` type, aka `(ref null func)`.
pub const FUNCREF: Self = RefType {
is_nullable: true,
heap_type: HeapType::Func,
};
/// The `nullfuncref` type, aka `(ref null nofunc)`.
pub const NULLFUNCREF: Self = RefType {
is_nullable: true,
heap_type: HeapType::NoFunc,
};
/// The `anyref` type, aka `(ref null any)`.
pub const ANYREF: Self = RefType {
is_nullable: true,
heap_type: HeapType::Any,
};
/// The `i31ref` type, aka `(ref null i31)`.
pub const I31REF: Self = RefType {
is_nullable: true,
heap_type: HeapType::I31,
};
/// The `nullref` type, aka `(ref null none)`.
pub const NULLREF: Self = RefType {
is_nullable: true,
heap_type: HeapType::None,
};
/// Construct a new reference type.
pub fn new(is_nullable: bool, heap_type: HeapType) -> RefType {
RefType {
is_nullable,
heap_type,
}
}
/// Can this type of reference be null?
pub fn is_nullable(&self) -> bool {
self.is_nullable
}
/// The heap type that this is a reference to.
pub fn heap_type(&self) -> &HeapType {
&self.heap_type
}
/// Does this reference type match the other?
///
/// That is, is this reference type a subtype of the other?
///
/// # Panics
///
/// Panics if either type is associated with a different engine from the
/// other.
pub fn matches(&self, other: &RefType) -> bool {
if self.is_nullable() && !other.is_nullable() {
return false;
}
self.heap_type().matches(other.heap_type())
}
/// Is reference type `a` precisely equal to reference type `b`?
///
/// Returns `false` even if `a` is a subtype of `b` or vice versa, if they
/// are not exactly the same reference type.
///
/// # Panics
///
/// Panics if either type is associated with a different engine.
pub fn eq(a: &RefType, b: &RefType) -> bool {
a.matches(b) && b.matches(a)
}
pub(crate) fn ensure_matches(&self, engine: &Engine, other: &RefType) -> Result<()> {
if !self.comes_from_same_engine(engine) || !other.comes_from_same_engine(engine) {
bail!("type used with wrong engine");
}
if self.matches(other) {
Ok(())
} else {
bail!("type mismatch: expected {other}, found {self}")
}
}
pub(crate) fn comes_from_same_engine(&self, engine: &Engine) -> bool {
self.heap_type().comes_from_same_engine(engine)
}
pub(crate) fn to_wasm_type(&self) -> WasmRefType {
WasmRefType {
nullable: self.is_nullable(),
heap_type: self.heap_type().to_wasm_type(),
}
}
pub(crate) fn from_wasm_type(engine: &Engine, ty: &WasmRefType) -> RefType {
RefType {
is_nullable: ty.nullable,
heap_type: HeapType::from_wasm_type(engine, &ty.heap_type),
}
}
pub(crate) fn is_gc_heap_type(&self) -> bool {
self.heap_type().is_gc_heap_type()
}
}
/// The heap types that can Wasm can have references to.
///
/// # Subtyping and Equality
///
/// `HeapType` does not implement `Eq`, because heap types have a subtyping
/// relationship, and so 99.99% of the time you actually want to check whether
/// one type matches (i.e. is a subtype of) another type. You can use the
/// [`HeapType::matches`] method to perform these types of checks. If, however,
/// you are in that 0.01% scenario where you need to check precise equality
/// between types, you can use the [`HeapType::eq`] method.
#[derive(Debug, Clone, Hash)]
pub enum HeapType {
/// The `extern` heap type represents external host data.
Extern,
/// The `func` heap type represents a reference to any kind of function.
///
/// This is the top type for the function references type hierarchy, and is
/// therefore a supertype of every function reference.
Func,
/// The concrete heap type represents a reference to a function of a
/// specific, concrete type.
///
/// This is a subtype of `func` and a supertype of `nofunc`.
Concrete(FuncType),
/// The `nofunc` heap type represents the null function reference.
///
/// This is the bottom type for the function references type hierarchy, and
/// therefore `nofunc` is a subtype of all function reference types.
NoFunc,
/// The abstract `any` heap type represents all internal Wasm data.
///
/// This is the top type of the internal type hierarchy, and is therefore a
/// supertype of all internal types (such as `i31`, `struct`s, and
/// `array`s).
Any,
/// The `i31` heap type represents unboxed 31-bit integers.
I31,
/// The abstract `none` heap type represents the null internal reference.
///
/// This is the bottom type for the internal type hierarchy, and therefore
/// `none` is a subtype of internal types.
None,
}
impl Display for HeapType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
HeapType::Extern => write!(f, "extern"),
HeapType::Func => write!(f, "func"),
HeapType::NoFunc => write!(f, "nofunc"),
HeapType::Any => write!(f, "any"),
HeapType::I31 => write!(f, "i31"),
HeapType::None => write!(f, "none"),
HeapType::Concrete(ty) => write!(f, "(concrete {:?})", ty.type_index()),
}
}
}
impl From<FuncType> for HeapType {
#[inline]
fn from(f: FuncType) -> Self {
HeapType::Concrete(f)
}
}
impl HeapType {
/// Is this the abstract `extern` heap type?
pub fn is_extern(&self) -> bool {
matches!(self, HeapType::Extern)
}
/// Is this the abstract `func` heap type?
pub fn is_func(&self) -> bool {
matches!(self, HeapType::Func)
}
/// Is this the abstract `nofunc` heap type?
pub fn is_no_func(&self) -> bool {
matches!(self, HeapType::NoFunc)
}
/// Is this the abstract `any` heap type?
pub fn is_any(&self) -> bool {
matches!(self, HeapType::Any)
}
/// Is this the abstract `i31` heap type?
pub fn is_i31(&self) -> bool {
matches!(self, HeapType::I31)
}
/// Is this the abstract `none` heap type?
pub fn is_none(&self) -> bool {
matches!(self, HeapType::None)
}
/// Is this an abstract type?
///
/// Types that are not abstract are concrete, user-defined types.
pub fn is_abstract(&self) -> bool {
!self.is_concrete()
}
/// Is this a concrete, user-defined heap type?
///
/// Types that are not concrete, user-defined types are abstract types.
pub fn is_concrete(&self) -> bool {
matches!(self, HeapType::Concrete(_))
}
/// Get the underlying concrete, user-defined type, if any.
///
/// Returns `None` for abstract types.
pub fn as_concrete(&self) -> Option<&FuncType> {
match self {
HeapType::Concrete(f) => Some(f),
_ => None,
}
}
/// Get the underlying concrete, user-defined type, panicking if this heap
/// type is not concrete.
pub fn unwrap_concrete(&self) -> &FuncType {
self.as_concrete()
.expect("HeapType::unwrap_concrete on non-concrete heap type")
}
/// Get the top type of this heap type's type hierarchy.
///
/// The returned heap type is a supertype of all types in this heap type's
/// type hierarchy.
pub fn top(&self, engine: &Engine) -> HeapType {
// The engine isn't used yet, but will be once we support Wasm GC, so
// future-proof our API.
let _ = engine;
match self {
HeapType::Func | HeapType::Concrete(_) | HeapType::NoFunc => HeapType::Func,
HeapType::Extern => HeapType::Extern,
HeapType::Any | HeapType::I31 | HeapType::None => HeapType::Any,
}
}
/// Does this heap type match the other heap type?
///
/// That is, is this heap type a subtype of the other?
///
/// # Panics
///
/// Panics if either type is associated with a different engine from the
/// other.
pub fn matches(&self, other: &HeapType) -> bool {
match (self, other) {
(HeapType::Extern, HeapType::Extern) => true,
(HeapType::Extern, _) => false,
(HeapType::NoFunc, HeapType::NoFunc | HeapType::Concrete(_) | HeapType::Func) => true,
(HeapType::NoFunc, _) => false,
(HeapType::Concrete(_), HeapType::Func) => true,
(HeapType::Concrete(a), HeapType::Concrete(b)) => a.matches(b),
(HeapType::Concrete(_), _) => false,
(HeapType::Func, HeapType::Func) => true,
(HeapType::Func, _) => false,
(HeapType::None, HeapType::None | HeapType::I31 | HeapType::Any) => true,
(HeapType::None, _) => false,
(HeapType::I31, HeapType::I31 | HeapType::Any) => true,
(HeapType::I31, _) => false,
(HeapType::Any, HeapType::Any) => true,
(HeapType::Any, _) => false,
}
}
/// Is heap type `a` precisely equal to heap type `b`?
///
/// Returns `false` even if `a` is a subtype of `b` or vice versa, if they
/// are not exactly the same heap type.
///
/// # Panics
///
/// Panics if either type is associated with a different engine from the
/// other.
pub fn eq(a: &HeapType, b: &HeapType) -> bool {
a.matches(b) && b.matches(a)
}
pub(crate) fn ensure_matches(&self, engine: &Engine, other: &HeapType) -> Result<()> {
if !self.comes_from_same_engine(engine) || !other.comes_from_same_engine(engine) {
bail!("type used with wrong engine");
}
if self.matches(other) {
Ok(())
} else {
bail!("type mismatch: expected {other}, found {self}");
}
}
pub(crate) fn comes_from_same_engine(&self, engine: &Engine) -> bool {
match self {
HeapType::Extern
| HeapType::Func
| HeapType::NoFunc
| HeapType::Any
| HeapType::I31
| HeapType::None => true,
HeapType::Concrete(ty) => ty.comes_from_same_engine(engine),
}
}
pub(crate) fn to_wasm_type(&self) -> WasmHeapType {
match self {
HeapType::Extern => WasmHeapType::Extern,
HeapType::Func => WasmHeapType::Func,
HeapType::NoFunc => WasmHeapType::NoFunc,
HeapType::Any => WasmHeapType::Any,
HeapType::I31 => WasmHeapType::I31,
HeapType::None => WasmHeapType::None,
HeapType::Concrete(f) => {
WasmHeapType::Concrete(EngineOrModuleTypeIndex::Engine(f.type_index().bits()))
}
}
}
pub(crate) fn from_wasm_type(engine: &Engine, ty: &WasmHeapType) -> HeapType {
match ty {
WasmHeapType::Extern => HeapType::Extern,
WasmHeapType::Func => HeapType::Func,
WasmHeapType::NoFunc => HeapType::NoFunc,
WasmHeapType::Any => HeapType::Any,
WasmHeapType::I31 => HeapType::I31,
WasmHeapType::None => HeapType::None,
WasmHeapType::Concrete(EngineOrModuleTypeIndex::Engine(idx)) => {
let idx = VMSharedTypeIndex::new(*idx);
HeapType::Concrete(FuncType::from_shared_type_index(engine, idx))
}
WasmHeapType::Concrete(EngineOrModuleTypeIndex::Module(_)) => {
panic!("HeapType::from_wasm_type on non-canonical heap type")
}
}
}
pub(crate) fn is_gc_heap_type(&self) -> bool {
// All `t <: (ref null any)` and `t <: (ref null extern)` that are
// not `(ref null? i31)` are GC-managed references.
match self {
// These types are managed by the GC.
HeapType::Extern | HeapType::Any => true,
// TODO: Once we support concrete struct and array types, we will
// need to inspect the payload to determine whether this is a
// GC-managed type or not.
Self::Concrete(_) => false,
// These are compatible with GC references, but don't actually point
// to GC objecs. It would generally be safe to return `true` here,
// but there is no need to.
HeapType::I31 => false,
// These are a subtype of GC-managed types, but are uninhabited, so
// can never actually point to a GC object. Again, we could return
// `true` here but there is no need.
HeapType::None => false,
// These types are not managed by the GC.
HeapType::Func | HeapType::NoFunc => false,
}
}
}
// External Types
/// A list of all possible types which can be externally referenced from a
/// WebAssembly module.
///
/// This list can be found in [`ImportType`] or [`ExportType`], so these types
/// can either be imported or exported.
#[derive(Debug, Clone)]
pub enum ExternType {
/// This external type is the type of a WebAssembly function.
Func(FuncType),
/// This external type is the type of a WebAssembly global.
Global(GlobalType),
/// This external type is the type of a WebAssembly table.
Table(TableType),
/// This external type is the type of a WebAssembly memory.
Memory(MemoryType),
}
macro_rules! extern_type_accessors {
($(($variant:ident($ty:ty) $get:ident $unwrap:ident))*) => ($(
/// Attempt to return the underlying type of this external type,
/// returning `None` if it is a different type.
pub fn $get(&self) -> Option<&$ty> {
if let ExternType::$variant(e) = self {
Some(e)
} else {
None
}
}
/// Returns the underlying descriptor of this [`ExternType`], panicking
/// if it is a different type.
///
/// # Panics
///
/// Panics if `self` is not of the right type.
pub fn $unwrap(&self) -> &$ty {
self.$get().expect(concat!("expected ", stringify!($ty)))
}
)*)
}
impl ExternType {
extern_type_accessors! {
(Func(FuncType) func unwrap_func)
(Global(GlobalType) global unwrap_global)
(Table(TableType) table unwrap_table)
(Memory(MemoryType) memory unwrap_memory)
}
pub(crate) fn from_wasmtime(
engine: &Engine,
types: &ModuleTypes,
ty: &EntityType,
) -> ExternType {
match ty {
EntityType::Function(idx) => match idx {
EngineOrModuleTypeIndex::Engine(e) => {
FuncType::from_shared_type_index(engine, VMSharedTypeIndex::new(*e)).into()
}
EngineOrModuleTypeIndex::Module(m) => {
FuncType::from_wasm_func_type(engine, types[*m].clone()).into()
}
},
EntityType::Global(ty) => GlobalType::from_wasmtime_global(engine, ty).into(),
EntityType::Memory(ty) => MemoryType::from_wasmtime_memory(ty).into(),
EntityType::Table(ty) => TableType::from_wasmtime_table(engine, ty).into(),
EntityType::Tag(_) => unimplemented!("wasm tag support"),
}
}
}
impl From<FuncType> for ExternType {
fn from(ty: FuncType) -> ExternType {
ExternType::Func(ty)
}
}
impl From<GlobalType> for ExternType {
fn from(ty: GlobalType) -> ExternType {
ExternType::Global(ty)
}
}
impl From<MemoryType> for ExternType {
fn from(ty: MemoryType) -> ExternType {
ExternType::Memory(ty)
}
}
impl From<TableType> for ExternType {
fn from(ty: TableType) -> ExternType {
ExternType::Table(ty)
}
}
/// The type of a WebAssembly function.
///
/// WebAssembly functions can have 0 or more parameters and results.
///
/// # Subtyping and Equality
///
/// `FuncType` does not implement `Eq`, because reference types have a subtyping
/// relationship, and so 99.99% of the time you actually want to check whether
/// one type matches (i.e. is a subtype of) another type. You can use the
/// [`FuncType::matches`] and [`Func::matches_ty`][crate::Func::matches_ty]
/// methods to perform these types of checks. If, however, you are in that 0.01%
/// scenario where you need to check precise equality between types, you can use
/// the [`FuncType::eq`] method.
#[derive(Debug, Clone, Hash)]
pub struct FuncType {
registered_type: RegisteredType,
}
impl Display for FuncType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "(type (func")?;
if self.params().len() > 0 {
write!(f, " (param")?;
for p in self.params() {
write!(f, " {p}")?;
}
write!(f, ")")?;
}
if self.results().len() > 0 {
write!(f, " (result")?;
for r in self.results() {
write!(f, " {r}")?;
}
write!(f, ")")?;
}
write!(f, "))")
}
}
impl FuncType {
/// Creates a new function descriptor from the given parameters and results.
///
/// The function descriptor returned will represent a function which takes
/// `params` as arguments and returns `results` when it is finished.
pub fn new(
engine: &Engine,
params: impl IntoIterator<Item = ValType>,
results: impl IntoIterator<Item = ValType>,
) -> FuncType {
// Keep any of our parameters' and results' `RegisteredType`s alive
// across `Self::from_wasm_func_type`. If one of our given `ValType`s is
// the only thing keeping a type in the registry, we don't want to
// unregister it when we convert the `ValType` into a `WasmValType` just
// before we register our new `WasmFuncType` that will reference it.
let mut registrations = vec![];
let mut to_wasm_type = |ty: ValType| {
if let Some(r) = ty.as_ref() {
if let Some(c) = r.heap_type().as_concrete() {
registrations.push(c.registered_type.clone());
}
}
ty.to_wasm_type()
};
Self::from_wasm_func_type(
engine,
WasmFuncType::new(
params.into_iter().map(&mut to_wasm_type).collect(),
results.into_iter().map(&mut to_wasm_type).collect(),
),
)
}
/// Get the engine that this function type is associated with.
pub fn engine(&self) -> &Engine {
self.registered_type.engine()
}
/// Get the `i`th parameter type.
///
/// Returns `None` if `i` is out of bounds.
pub fn param(&self, i: usize) -> Option<ValType> {
let engine = self.engine();
self.registered_type
.params()
.get(i)
.map(|ty| ValType::from_wasm_type(engine, ty))
}
/// Returns the list of parameter types for this function.
#[inline]
pub fn params(&self) -> impl ExactSizeIterator<Item = ValType> + '_ {
let engine = self.engine();
self.registered_type
.params()
.iter()
.map(|ty| ValType::from_wasm_type(engine, ty))
}
/// Get the `i`th result type.
///
/// Returns `None` if `i` is out of bounds.
pub fn result(&self, i: usize) -> Option<ValType> {
let engine = self.engine();
self.registered_type
.returns()
.get(i)
.map(|ty| ValType::from_wasm_type(engine, ty))
}
/// Returns the list of result types for this function.
#[inline]
pub fn results(&self) -> impl ExactSizeIterator<Item = ValType> + '_ {
let engine = self.engine();
self.registered_type
.returns()
.iter()
.map(|ty| ValType::from_wasm_type(engine, ty))
}
/// Does this function type match the other function type?
///
/// That is, is this function type a subtype of the other function type?
///
/// # Panics
///
/// Panics if either type is associated with a different engine from the
/// other.
pub fn matches(&self, other: &FuncType) -> bool {
assert!(self.comes_from_same_engine(other.engine()));
// Avoid matching on structure for subtyping checks when we have
// precisely the same type.
if self.type_index() == other.type_index() {
return true;
}
self.params().len() == other.params().len()
&& self.results().len() == other.results().len()
// Params are contravariant and results are covariant. For more
// details and a refresher on variance, read
// https://github.com/bytecodealliance/wasm-tools/blob/f1d89a4/crates/wasmparser/src/readers/core/types/matches.rs#L137-L174
&& self
.params()
.zip(other.params())
.all(|(a, b)| b.matches(&a))
&& self
.results()
.zip(other.results())
.all(|(a, b)| a.matches(&b))
}
/// Is function type `a` precisely equal to function type `b`?
///
/// Returns `false` even if `a` is a subtype of `b` or vice versa, if they
/// are not exactly the same function type.
///
/// # Panics
///
/// Panics if either type is associated with a different engine from the
/// other.
pub fn eq(a: &FuncType, b: &FuncType) -> bool {
assert!(a.comes_from_same_engine(b.engine()));
a.type_index() == b.type_index()
}
pub(crate) fn comes_from_same_engine(&self, engine: &Engine) -> bool {
Engine::same(self.registered_type.engine(), engine)
}
pub(crate) fn type_index(&self) -> VMSharedTypeIndex {
self.registered_type.index()
}
pub(crate) fn as_wasm_func_type(&self) -> &WasmFuncType {
&self.registered_type
}
pub(crate) fn into_registered_type(self) -> RegisteredType {
self.registered_type
}
/// Construct a `FuncType` from a `WasmFuncType`.
///
/// This method should only be used when something has already registered --
/// and is *keeping registered* -- any other concrete Wasm types referenced
/// by the given `WasmFuncType`.
///
/// For example, this method may be called to convert a function type from
/// within a Wasm module's `ModuleTypes` since the Wasm module itself is
/// holding a strong reference to all of its types, including any `(ref null
/// <index>)` types used in the function's parameters and results.
pub(crate) fn from_wasm_func_type(engine: &Engine, ty: WasmFuncType) -> FuncType {
let ty = RegisteredType::new(engine, ty);
Self {
registered_type: ty,
}
}
pub(crate) fn from_shared_type_index(engine: &Engine, index: VMSharedTypeIndex) -> FuncType {
let ty = RegisteredType::root(engine, index).expect(
"VMSharedTypeIndex is not registered in the Engine! Wrong \
engine? Didn't root the index somewhere?",
);
Self {
registered_type: ty,
}
}
}
// Global Types
/// A WebAssembly global descriptor.
///
/// This type describes an instance of a global in a WebAssembly module. Globals
/// are local to an [`Instance`](crate::Instance) and are either immutable or
/// mutable.
#[derive(Debug, Clone, Hash)]
pub struct GlobalType {
content: ValType,
mutability: Mutability,
}
impl GlobalType {
/// Creates a new global descriptor of the specified `content` type and
/// whether or not it's mutable.
pub fn new(content: ValType, mutability: Mutability) -> GlobalType {
GlobalType {
content,
mutability,
}
}
/// Returns the value type of this global descriptor.
pub fn content(&self) -> &ValType {
&self.content
}
/// Returns whether or not this global is mutable.
pub fn mutability(&self) -> Mutability {
self.mutability
}
pub(crate) fn to_wasm_type(&self) -> Global {
let wasm_ty = self.content().to_wasm_type();
let mutability = matches!(self.mutability(), Mutability::Var);
Global {
wasm_ty,
mutability,
}
}
/// Returns `None` if the wasmtime global has a type that we can't
/// represent, but that should only very rarely happen and indicate a bug.
pub(crate) fn from_wasmtime_global(engine: &Engine, global: &Global) -> GlobalType {
let ty = ValType::from_wasm_type(engine, &global.wasm_ty);
let mutability = if global.mutability {
Mutability::Var
} else {
Mutability::Const
};
GlobalType::new(ty, mutability)
}
}
// Table Types
/// A descriptor for a table in a WebAssembly module.
///
/// Tables are contiguous chunks of a specific element, typically a `funcref` or
/// an `externref`. The most common use for tables is a function table through
/// which `call_indirect` can invoke other functions.
#[derive(Debug, Clone, Hash)]
pub struct TableType {
// Keep a `wasmtime::RefType` so that `TableType::element` doesn't need to
// take an `&Engine`.
element: RefType,
ty: Table,
}
impl TableType {
/// Creates a new table descriptor which will contain the specified
/// `element` and have the `limits` applied to its length.
pub fn new(element: RefType, min: u32, max: Option<u32>) -> TableType {
let wasm_ty = element.to_wasm_type();
if cfg!(debug_assertions) {
wasm_ty
.trace(&mut |idx| match idx {
EngineOrModuleTypeIndex::Engine(_) => Ok(()),
EngineOrModuleTypeIndex::Module(module_idx) => Err(format!(
"found module-level canonicalized type index: {module_idx:?}"
)),
})
.expect("element type should be engine-level canonicalized");
}
TableType {
element,
ty: Table {
wasm_ty,
minimum: min,
maximum: max,
},
}
}
/// Returns the element value type of this table.
pub fn element(&self) -> &RefType {
&self.element
}
/// Returns minimum number of elements this table must have
pub fn minimum(&self) -> u32 {
self.ty.minimum
}
/// Returns the optionally-specified maximum number of elements this table
/// can have.
///
/// If this returns `None` then the table is not limited in size.
pub fn maximum(&self) -> Option<u32> {
self.ty.maximum
}
pub(crate) fn from_wasmtime_table(engine: &Engine, table: &Table) -> TableType {
let element = RefType::from_wasm_type(engine, &table.wasm_ty);
TableType {
element,
ty: table.clone(),
}
}
pub(crate) fn wasmtime_table(&self) -> &Table {
&self.ty
}
}
// Memory Types
/// A descriptor for a WebAssembly memory type.
///
/// Memories are described in units of pages (64KB) and represent contiguous
/// chunks of addressable memory.
#[derive(Debug, Clone, Hash, Eq, PartialEq)]
pub struct MemoryType {
ty: Memory,
}
impl MemoryType {
/// Creates a new descriptor for a 32-bit WebAssembly memory given the
/// specified limits of the memory.
///
/// The `minimum` and `maximum` values here are specified in units of
/// WebAssembly pages, which are 64k.
pub fn new(minimum: u32, maximum: Option<u32>) -> MemoryType {
MemoryType {
ty: Memory {
memory64: false,
shared: false,
minimum: minimum.into(),
maximum: maximum.map(|i| i.into()),
},
}
}
/// Creates a new descriptor for a 64-bit WebAssembly memory given the
/// specified limits of the memory.
///
/// The `minimum` and `maximum` values here are specified in units of
/// WebAssembly pages, which are 64k.
///
/// Note that 64-bit memories are part of the memory64 proposal for
/// WebAssembly which is not standardized yet.
pub fn new64(minimum: u64, maximum: Option<u64>) -> MemoryType {
MemoryType {
ty: Memory {
memory64: true,
shared: false,
minimum,
maximum,
},
}
}
/// Creates a new descriptor for shared WebAssembly memory given the
/// specified limits of the memory.
///
/// The `minimum` and `maximum` values here are specified in units of
/// WebAssembly pages, which are 64k.
///
/// Note that shared memories are part of the threads proposal for
/// WebAssembly which is not standardized yet.
pub fn shared(minimum: u32, maximum: u32) -> MemoryType {
MemoryType {
ty: Memory {
memory64: false,
shared: true,
minimum: minimum.into(),
maximum: Some(maximum.into()),
},
}
}
/// Returns whether this is a 64-bit memory or not.
///
/// Note that 64-bit memories are part of the memory64 proposal for
/// WebAssembly which is not standardized yet.
pub fn is_64(&self) -> bool {
self.ty.memory64
}
/// Returns whether this is a shared memory or not.
///
/// Note that shared memories are part of the threads proposal for
/// WebAssembly which is not standardized yet.
pub fn is_shared(&self) -> bool {
self.ty.shared
}
/// Returns minimum number of WebAssembly pages this memory must have.
///
/// Note that the return value, while a `u64`, will always fit into a `u32`
/// for 32-bit memories.
pub fn minimum(&self) -> u64 {
self.ty.minimum
}
/// Returns the optionally-specified maximum number of pages this memory
/// can have.
///
/// If this returns `None` then the memory is not limited in size.
///
/// Note that the return value, while a `u64`, will always fit into a `u32`
/// for 32-bit memories.
pub fn maximum(&self) -> Option<u64> {
self.ty.maximum
}
pub(crate) fn from_wasmtime_memory(memory: &Memory) -> MemoryType {
MemoryType { ty: memory.clone() }
}
pub(crate) fn wasmtime_memory(&self) -> &Memory {
&self.ty
}
}
// Import Types
/// A descriptor for an imported value into a wasm module.
///
/// This type is primarily accessed from the
/// [`Module::imports`](crate::Module::imports) API. Each [`ImportType`]
/// describes an import into the wasm module with the module/name that it's
/// imported from as well as the type of item that's being imported.
#[derive(Clone)]
pub struct ImportType<'module> {
/// The module of the import.
module: &'module str,
/// The field of the import.
name: &'module str,
/// The type of the import.
ty: EntityType,
types: &'module ModuleTypes,
engine: &'module Engine,
}
impl<'module> ImportType<'module> {
/// Creates a new import descriptor which comes from `module` and `name` and
/// is of type `ty`.
pub(crate) fn new(
module: &'module str,
name: &'module str,
ty: EntityType,
types: &'module ModuleTypes,
engine: &'module Engine,
) -> ImportType<'module> {
ImportType {
module,
name,
ty,
types,
engine,
}
}
/// Returns the module name that this import is expected to come from.
pub fn module(&self) -> &'module str {
self.module
}
/// Returns the field name of the module that this import is expected to
/// come from.
pub fn name(&self) -> &'module str {
self.name
}
/// Returns the expected type of this import.
pub fn ty(&self) -> ExternType {
ExternType::from_wasmtime(self.engine, self.types, &self.ty)
}
}
impl<'module> fmt::Debug for ImportType<'module> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ImportType")
.field("module", &self.module())
.field("name", &self.name())
.field("ty", &self.ty())
.finish()
}
}
// Export Types
/// A descriptor for an exported WebAssembly value.
///
/// This type is primarily accessed from the
/// [`Module::exports`](crate::Module::exports) accessor and describes what
/// names are exported from a wasm module and the type of the item that is
/// exported.
#[derive(Clone)]
pub struct ExportType<'module> {
/// The name of the export.
name: &'module str,
/// The type of the export.
ty: EntityType,
types: &'module ModuleTypes,
engine: &'module Engine,
}
impl<'module> ExportType<'module> {
/// Creates a new export which is exported with the given `name` and has the
/// given `ty`.
pub(crate) fn new(
name: &'module str,
ty: EntityType,
types: &'module ModuleTypes,
engine: &'module Engine,
) -> ExportType<'module> {
ExportType {
name,
ty,
types,
engine,
}
}
/// Returns the name by which this export is known.
pub fn name(&self) -> &'module str {
self.name
}
/// Returns the type of this export.
pub fn ty(&self) -> ExternType {
ExternType::from_wasmtime(self.engine, self.types, &self.ty)
}
}
impl<'module> fmt::Debug for ExportType<'module> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ExportType")
.field("name", &self.name().to_owned())
.field("ty", &self.ty())
.finish()
}
}