dyn_stack/
alloc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
// copied from libcore/liballoc

use core::alloc::Layout;
use core::cell::UnsafeCell;
use core::fmt;
use core::marker::PhantomData;
use core::mem::MaybeUninit;
use core::ptr;
use core::ptr::NonNull;

extern crate alloc;

#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct AllocError;

#[cfg(any(feature = "std", feature = "core-error"))]
impl crate::Error for AllocError {}

impl fmt::Display for AllocError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("memory allocation failed")
    }
}

/// An implementation of `Allocator` can allocate, grow, shrink, and deallocate arbitrary blocks of
/// data described via [`Layout`][].
///
/// `Allocator` is designed to be implemented on ZSTs, references, or smart pointers because having
/// an allocator like `MyAllocator([u8; N])` cannot be moved, without updating the pointers to the
/// allocated memory.
///
/// Unlike [`alloc::alloc::GlobalAlloc`][], zero-sized allocations are allowed in `Allocator`. If an underlying
/// allocator does not support this (like jemalloc) or return a null pointer (such as
/// `libc::malloc`), this must be caught by the implementation.
///
/// ### Currently allocated memory
///
/// Some of the methods require that a memory block be *currently allocated* via an allocator. This
/// means that:
///
/// * the starting address for that memory block was previously returned by [`allocate`], [`grow`], or
///   [`shrink`], and
///
/// * the memory block has not been subsequently deallocated, where blocks are either deallocated
///   directly by being passed to [`deallocate`] or were changed by being passed to [`grow`] or
///   [`shrink`] that returns `Ok`. If `grow` or `shrink` have returned `Err`, the passed pointer
///   remains valid.
///
/// [`allocate`]: Allocator::allocate
/// [`grow`]: Allocator::grow
/// [`shrink`]: Allocator::shrink
/// [`deallocate`]: Allocator::deallocate
///
/// ### Memory fitting
///
/// Some of the methods require that a layout *fit* a memory block. What it means for a layout to
/// "fit" a memory block means (or equivalently, for a memory block to "fit" a layout) is that the
/// following conditions must hold:
///
/// * The block must be allocated with the same alignment as [`layout.align()`], and
///
/// * The provided [`layout.size()`] must fall in the range `min ..= max`, where:
///   - `min` is the size of the layout most recently used to allocate the block, and
///   - `max` is the latest actual size returned from [`allocate`], [`grow`], or [`shrink`].
///
/// [`layout.align()`]: Layout::align
/// [`layout.size()`]: Layout::size
///
/// # Safety
///
/// * Memory blocks returned from an allocator that are [*currently allocated*] must point to
///   valid memory and retain their validity while they are [*currently allocated*] and the shorter
///   of:
///   - the borrow-checker lifetime of the allocator type itself.
///
/// * any pointer to a memory block which is [*currently allocated*] may be passed to any other
///   method of the allocator.
///
/// [*currently allocated*]: #currently-allocated-memory
pub unsafe trait Allocator {
    /// Attempts to allocate a block of memory.
    ///
    /// On success, returns a [`NonNull<[u8]>`][NonNull] meeting the size and alignment guarantees of `layout`.
    ///
    /// The returned block may have a larger size than specified by `layout.size()`, and may or may
    /// not have its contents initialized.
    ///
    /// The returned block of memory remains valid as long as it is [*currently allocated*] and the shorter of:
    ///   - the borrow-checker lifetime of the allocator type itself.
    ///
    /// # Errors
    ///
    /// Returning `Err` indicates that either memory is exhausted or `layout` does not meet
    /// allocator's size or alignment constraints.
    ///
    /// Implementations are encouraged to return `Err` on memory exhaustion rather than panicking or
    /// aborting, but this is not a strict requirement. (Specifically: it is *legal* to implement
    /// this trait atop an underlying native allocation library that aborts on memory exhaustion.)
    ///
    /// Clients wishing to abort computation in response to an allocation error are encouraged to
    /// call the [`handle_alloc_error`] function, rather than directly invoking `panic!` or similar.
    ///
    /// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html
    fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError>;

    /// Behaves like `allocate`, but also ensures that the returned memory is zero-initialized.
    ///
    /// # Errors
    ///
    /// Returning `Err` indicates that either memory is exhausted or `layout` does not meet
    /// allocator's size or alignment constraints.
    ///
    /// Implementations are encouraged to return `Err` on memory exhaustion rather than panicking or
    /// aborting, but this is not a strict requirement. (Specifically: it is *legal* to implement
    /// this trait atop an underlying native allocation library that aborts on memory exhaustion.)
    ///
    /// Clients wishing to abort computation in response to an allocation error are encouraged to
    /// call the [`handle_alloc_error`] function, rather than directly invoking `panic!` or similar.
    ///
    /// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html
    fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        let ptr = self.allocate(layout)?;
        // SAFETY: `alloc` returns a valid memory block
        unsafe { (ptr.as_ptr() as *mut u8).write_bytes(0, ptr.len()) }
        Ok(ptr)
    }

    /// Deallocates the memory referenced by `ptr`.
    ///
    /// # Safety
    ///
    /// * `ptr` must denote a block of memory [*currently allocated*] via this allocator, and
    /// * `layout` must [*fit*] that block of memory.
    ///
    /// [*currently allocated*]: #currently-allocated-memory
    /// [*fit*]: #memory-fitting
    unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout);

    /// Attempts to extend the memory block.
    ///
    /// Returns a new [`NonNull<[u8]>`][NonNull] containing a pointer and the actual size of the allocated
    /// memory. The pointer is suitable for holding data described by `new_layout`. To accomplish
    /// this, the allocator may extend the allocation referenced by `ptr` to fit the new layout.
    ///
    /// If this returns `Ok`, then ownership of the memory block referenced by `ptr` has been
    /// transferred to this allocator. Any access to the old `ptr` is Undefined Behavior, even if the
    /// allocation was grown in-place. The newly returned pointer is the only valid pointer
    /// for accessing this memory now.
    ///
    /// If this method returns `Err`, then ownership of the memory block has not been transferred to
    /// this allocator, and the contents of the memory block are unaltered.
    ///
    /// # Safety
    ///
    /// * `ptr` must denote a block of memory [*currently allocated*] via this allocator.
    /// * `old_layout` must [*fit*] that block of memory (The `new_layout` argument need not fit it.).
    /// * `new_layout.size()` must be greater than or equal to `old_layout.size()`.
    ///
    /// Note that `new_layout.align()` need not be the same as `old_layout.align()`.
    ///
    /// [*currently allocated*]: #currently-allocated-memory
    /// [*fit*]: #memory-fitting
    ///
    /// # Errors
    ///
    /// Returns `Err` if the new layout does not meet the allocator's size and alignment
    /// constraints of the allocator, or if growing otherwise fails.
    ///
    /// Implementations are encouraged to return `Err` on memory exhaustion rather than panicking or
    /// aborting, but this is not a strict requirement. (Specifically: it is *legal* to implement
    /// this trait atop an underlying native allocation library that aborts on memory exhaustion.)
    ///
    /// Clients wishing to abort computation in response to an allocation error are encouraged to
    /// call the [`handle_alloc_error`] function, rather than directly invoking `panic!` or similar.
    ///
    /// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html
    unsafe fn grow(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        debug_assert!(
            new_layout.size() >= old_layout.size(),
            "`new_layout.size()` must be greater than or equal to `old_layout.size()`"
        );

        let new_ptr = self.allocate(new_layout)?;

        // SAFETY: because `new_layout.size()` must be greater than or equal to
        // `old_layout.size()`, both the old and new memory allocation are valid for reads and
        // writes for `old_layout.size()` bytes. Also, because the old allocation wasn't yet
        // deallocated, it cannot overlap `new_ptr`. Thus, the call to `copy_nonoverlapping` is
        // safe. The safety contract for `dealloc` must be upheld by the caller.
        unsafe {
            ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr() as *mut u8, old_layout.size());
            self.deallocate(ptr, old_layout);
        }

        Ok(new_ptr)
    }

    /// Behaves like `grow`, but also ensures that the new contents are set to zero before being
    /// returned.
    ///
    /// The memory block will contain the following contents after a successful call to
    /// `grow_zeroed`:
    ///   * Bytes `0..old_layout.size()` are preserved from the original allocation.
    ///   * Bytes `old_layout.size()..old_size` will either be preserved or zeroed, depending on
    ///     the allocator implementation. `old_size` refers to the size of the memory block prior
    ///     to the `grow_zeroed` call, which may be larger than the size that was originally
    ///     requested when it was allocated.
    ///   * Bytes `old_size..new_size` are zeroed. `new_size` refers to the size of the memory
    ///     block returned by the `grow_zeroed` call.
    ///
    /// # Safety
    ///
    /// * `ptr` must denote a block of memory [*currently allocated*] via this allocator.
    /// * `old_layout` must [*fit*] that block of memory (The `new_layout` argument need not fit it.).
    /// * `new_layout.size()` must be greater than or equal to `old_layout.size()`.
    ///
    /// Note that `new_layout.align()` need not be the same as `old_layout.align()`.
    ///
    /// [*currently allocated*]: #currently-allocated-memory
    /// [*fit*]: #memory-fitting
    ///
    /// # Errors
    ///
    /// Returns `Err` if the new layout does not meet the allocator's size and alignment
    /// constraints of the allocator, or if growing otherwise fails.
    ///
    /// Implementations are encouraged to return `Err` on memory exhaustion rather than panicking or
    /// aborting, but this is not a strict requirement. (Specifically: it is *legal* to implement
    /// this trait atop an underlying native allocation library that aborts on memory exhaustion.)
    ///
    /// Clients wishing to abort computation in response to an allocation error are encouraged to
    /// call the [`handle_alloc_error`] function, rather than directly invoking `panic!` or similar.
    ///
    /// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html
    unsafe fn grow_zeroed(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        debug_assert!(
            new_layout.size() >= old_layout.size(),
            "`new_layout.size()` must be greater than or equal to `old_layout.size()`"
        );

        let new_ptr = self.allocate_zeroed(new_layout)?;

        // SAFETY: because `new_layout.size()` must be greater than or equal to
        // `old_layout.size()`, both the old and new memory allocation are valid for reads and
        // writes for `old_layout.size()` bytes. Also, because the old allocation wasn't yet
        // deallocated, it cannot overlap `new_ptr`. Thus, the call to `copy_nonoverlapping` is
        // safe. The safety contract for `dealloc` must be upheld by the caller.
        unsafe {
            ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr() as *mut u8, old_layout.size());
            self.deallocate(ptr, old_layout);
        }

        Ok(new_ptr)
    }

    /// Attempts to shrink the memory block.
    ///
    /// Returns a new [`NonNull<[u8]>`][NonNull] containing a pointer and the actual size of the allocated
    /// memory. The pointer is suitable for holding data described by `new_layout`. To accomplish
    /// this, the allocator may shrink the allocation referenced by `ptr` to fit the new layout.
    ///
    /// If this returns `Ok`, then ownership of the memory block referenced by `ptr` has been
    /// transferred to this allocator. Any access to the old `ptr` is Undefined Behavior, even if the
    /// allocation was shrunk in-place. The newly returned pointer is the only valid pointer
    /// for accessing this memory now.
    ///
    /// If this method returns `Err`, then ownership of the memory block has not been transferred to
    /// this allocator, and the contents of the memory block are unaltered.
    ///
    /// # Safety
    ///
    /// * `ptr` must denote a block of memory [*currently allocated*] via this allocator.
    /// * `old_layout` must [*fit*] that block of memory (The `new_layout` argument need not fit it.).
    /// * `new_layout.size()` must be smaller than or equal to `old_layout.size()`.
    ///
    /// Note that `new_layout.align()` need not be the same as `old_layout.align()`.
    ///
    /// [*currently allocated*]: #currently-allocated-memory
    /// [*fit*]: #memory-fitting
    ///
    /// # Errors
    ///
    /// Returns `Err` if the new layout does not meet the allocator's size and alignment
    /// constraints of the allocator, or if shrinking otherwise fails.
    ///
    /// Implementations are encouraged to return `Err` on memory exhaustion rather than panicking or
    /// aborting, but this is not a strict requirement. (Specifically: it is *legal* to implement
    /// this trait atop an underlying native allocation library that aborts on memory exhaustion.)
    ///
    /// Clients wishing to abort computation in response to an allocation error are encouraged to
    /// call the [`handle_alloc_error`] function, rather than directly invoking `panic!` or similar.
    ///
    /// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html
    unsafe fn shrink(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        debug_assert!(
            new_layout.size() <= old_layout.size(),
            "`new_layout.size()` must be smaller than or equal to `old_layout.size()`"
        );

        let new_ptr = self.allocate(new_layout)?;

        // SAFETY: because `new_layout.size()` must be lower than or equal to
        // `old_layout.size()`, both the old and new memory allocation are valid for reads and
        // writes for `new_layout.size()` bytes. Also, because the old allocation wasn't yet
        // deallocated, it cannot overlap `new_ptr`. Thus, the call to `copy_nonoverlapping` is
        // safe. The safety contract for `dealloc` must be upheld by the caller.
        unsafe {
            ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr() as *mut u8, new_layout.size());
            self.deallocate(ptr, old_layout);
        }

        Ok(new_ptr)
    }

    /// Creates a "by reference" adapter for this instance of `Allocator`.
    ///
    /// The returned adapter also implements `Allocator` and will simply borrow this.
    #[inline(always)]
    fn by_ref(&self) -> &Self
    where
        Self: Sized,
    {
        self
    }
}

unsafe impl<T: ?Sized + Allocator> Allocator for &T {
    #[inline(always)]
    fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        (**self).allocate(layout)
    }

    #[inline(always)]
    unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
        (**self).deallocate(ptr, layout)
    }

    #[inline(always)]
    fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        (**self).allocate_zeroed(layout)
    }

    #[inline(always)]
    unsafe fn grow(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        (**self).grow(ptr, old_layout, new_layout)
    }

    #[inline(always)]
    unsafe fn grow_zeroed(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        (**self).grow_zeroed(ptr, old_layout, new_layout)
    }

    #[inline(always)]
    unsafe fn shrink(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        (**self).shrink(ptr, old_layout, new_layout)
    }
}

unsafe impl<T: ?Sized + Allocator> Allocator for &mut T {
    #[inline(always)]
    fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        (**self).allocate(layout)
    }

    #[inline(always)]
    unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
        (**self).deallocate(ptr, layout)
    }

    #[inline(always)]
    fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        (**self).allocate_zeroed(layout)
    }

    #[inline(always)]
    unsafe fn grow(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        (**self).grow(ptr, old_layout, new_layout)
    }

    #[inline(always)]
    unsafe fn grow_zeroed(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        (**self).grow_zeroed(ptr, old_layout, new_layout)
    }

    #[inline(always)]
    unsafe fn shrink(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        (**self).shrink(ptr, old_layout, new_layout)
    }
}

#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
unsafe impl<T: ?Sized + Allocator> Allocator for alloc::boxed::Box<T> {
    #[inline(always)]
    fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        (**self).allocate(layout)
    }

    #[inline(always)]
    unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
        (**self).deallocate(ptr, layout)
    }

    #[inline(always)]
    fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        (**self).allocate_zeroed(layout)
    }

    #[inline(always)]
    unsafe fn grow(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        (**self).grow(ptr, old_layout, new_layout)
    }

    #[inline(always)]
    unsafe fn grow_zeroed(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        (**self).grow_zeroed(ptr, old_layout, new_layout)
    }

    #[inline(always)]
    unsafe fn shrink(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        (**self).shrink(ptr, old_layout, new_layout)
    }
}

#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub struct Global;

#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
unsafe impl Allocator for Global {
    fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        let ptr = if layout.size() == 0 {
            core::ptr::null_mut::<u8>().wrapping_add(layout.align())
        } else {
            unsafe { alloc::alloc::alloc(layout) }
        };

        if ptr.is_null() {
            Err(AllocError)
        } else {
            Ok(unsafe {
                NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut(ptr, layout.size()))
            })
        }
    }

    fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        let ptr = if layout.size() == 0 {
            core::ptr::null_mut::<u8>().wrapping_add(layout.align())
        } else {
            unsafe { alloc::alloc::alloc_zeroed(layout) }
        };

        if ptr.is_null() {
            Err(AllocError)
        } else {
            Ok(unsafe {
                NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut(ptr, layout.size()))
            })
        }
    }

    unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
        if layout.size() != 0 {
            alloc::alloc::dealloc(ptr.as_ptr(), layout);
        }
    }

    unsafe fn grow(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        core::debug_assert!(
            new_layout.size() >= old_layout.size(),
            "`new_layout.size()` must be greater than or equal to `old_layout.size()`"
        );

        if old_layout.align() == new_layout.align() {
            let ptr = if new_layout.size() == 0 {
                core::ptr::null_mut::<u8>().wrapping_add(new_layout.align())
            } else {
                alloc::alloc::realloc(ptr.as_ptr(), old_layout, new_layout.size())
            };
            if ptr.is_null() {
                Err(AllocError)
            } else {
                Ok(unsafe {
                    NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut(
                        ptr,
                        new_layout.size(),
                    ))
                })
            }
        } else {
            let new_ptr = self.allocate(new_layout)?;

            // SAFETY: because `new_layout.size()` must be greater than or equal to
            // `old_layout.size()`, both the old and new memory allocation are valid for reads and
            // writes for `old_layout.size()` bytes. Also, because the old allocation wasn't yet
            // deallocated, it cannot overlap `new_ptr`. Thus, the call to `copy_nonoverlapping` is
            // safe. The safety contract for `dealloc` must be upheld by the caller.
            unsafe {
                ptr::copy_nonoverlapping(
                    ptr.as_ptr(),
                    new_ptr.as_ptr() as *mut u8,
                    old_layout.size(),
                );
                self.deallocate(ptr, old_layout);
            }

            Ok(new_ptr)
        }
    }

    unsafe fn shrink(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        core::debug_assert!(
            new_layout.size() <= old_layout.size(),
            "`new_layout.size()` must be smaller than or equal to `old_layout.size()`"
        );

        if old_layout.align() == new_layout.align() {
            let ptr = if new_layout.size() == 0 {
                core::ptr::null_mut::<u8>().wrapping_add(new_layout.align())
            } else {
                alloc::alloc::realloc(ptr.as_ptr(), old_layout, new_layout.size())
            };

            if ptr.is_null() {
                Err(AllocError)
            } else {
                Ok(unsafe {
                    NonNull::new_unchecked(core::ptr::slice_from_raw_parts_mut(
                        ptr,
                        new_layout.size(),
                    ))
                })
            }
        } else {
            let new_ptr = self.allocate(new_layout)?;

            // SAFETY: because `new_layout.size()` must be lower than or equal to
            // `old_layout.size()`, both the old and new memory allocation are valid for reads and
            // writes for `new_layout.size()` bytes. Also, because the old allocation wasn't yet
            // deallocated, it cannot overlap `new_ptr`. Thus, the call to `copy_nonoverlapping` is
            // safe. The safety contract for `dealloc` must be upheld by the caller.
            unsafe {
                ptr::copy_nonoverlapping(
                    ptr.as_ptr(),
                    new_ptr.as_ptr() as *mut u8,
                    new_layout.size(),
                );
                self.deallocate(ptr, old_layout);
            }

            Ok(new_ptr)
        }
    }
}

#[derive(Copy, Clone, Debug)]
pub(crate) struct VTable {
    pub allocate: unsafe fn(*const (), Layout) -> Result<NonNull<[u8]>, AllocError>,
    pub allocate_zeroed: unsafe fn(*const (), Layout) -> Result<NonNull<[u8]>, AllocError>,
    pub deallocate: unsafe fn(*const (), ptr: NonNull<u8>, Layout),
    pub grow:
        unsafe fn(*const (), NonNull<u8>, Layout, Layout) -> Result<NonNull<[u8]>, AllocError>,
    pub grow_zeroed:
        unsafe fn(*const (), NonNull<u8>, Layout, Layout) -> Result<NonNull<[u8]>, AllocError>,
    pub shrink:
        unsafe fn(*const (), NonNull<u8>, Layout, Layout) -> Result<NonNull<[u8]>, AllocError>,

    pub clone: Option<unsafe fn(*mut (), *const ())>,
    pub drop: unsafe fn(*mut ()),
}

pub struct DynAlloc<'a> {
    pub(crate) alloc: UnsafeCell<MaybeUninit<*const ()>>,
    pub(crate) vtable: &'static VTable,
    __marker: PhantomData<&'a ()>,
}

unsafe impl Send for DynAlloc<'_> {}

unsafe impl Allocator for DynAlloc<'_> {
    #[inline]
    fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        unsafe { (self.vtable.allocate)(core::ptr::addr_of!(self.alloc) as *const (), layout) }
    }

    #[inline]
    unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
        unsafe {
            (self.vtable.deallocate)(core::ptr::addr_of!(self.alloc) as *const (), ptr, layout)
        }
    }

    #[inline]
    fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        unsafe {
            (self.vtable.allocate_zeroed)(core::ptr::addr_of!(self.alloc) as *const (), layout)
        }
    }

    #[inline]
    unsafe fn grow(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        unsafe {
            (self.vtable.grow)(
                core::ptr::addr_of!(self.alloc) as *const (),
                ptr,
                old_layout,
                new_layout,
            )
        }
    }

    #[inline]
    unsafe fn grow_zeroed(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        unsafe {
            (self.vtable.grow_zeroed)(
                core::ptr::addr_of!(self.alloc) as *const (),
                ptr,
                old_layout,
                new_layout,
            )
        }
    }

    #[inline]
    unsafe fn shrink(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        unsafe {
            (self.vtable.shrink)(
                core::ptr::addr_of!(self.alloc) as *const (),
                ptr,
                old_layout,
                new_layout,
            )
        }
    }
}

impl Drop for DynAlloc<'_> {
    #[inline]
    fn drop(&mut self) {
        unsafe { (self.vtable.drop)(core::ptr::addr_of_mut!(self.alloc) as *mut ()) }
    }
}

impl Clone for DynAlloc<'_> {
    #[inline]
    fn clone(&self) -> Self {
        let mut alloc = UnsafeCell::new(MaybeUninit::uninit());
        unsafe {
            self.vtable.clone.unwrap()(
                core::ptr::addr_of_mut!(alloc) as *mut (),
                core::ptr::addr_of!(self.alloc) as *const (),
            );
        }

        Self {
            alloc,
            vtable: self.vtable,
            __marker: PhantomData,
        }
    }
}

impl<'a> DynAlloc<'a> {
    #[inline]
    pub fn try_new_unclone<A: 'a + Allocator + Send>(alloc: A) -> Result<Self, A> {
        if core::mem::size_of::<A>() <= core::mem::size_of::<*const ()>()
            && core::mem::align_of::<A>() <= core::mem::align_of::<*const ()>()
        {
            trait AllocUnclone: Allocator + Send {
                const VTABLE: &'static VTable = &unsafe {
                    VTable {
                        allocate: core::mem::transmute(Self::allocate as fn(&Self, _) -> _),
                        allocate_zeroed: core::mem::transmute(
                            Self::allocate_zeroed as fn(&Self, _) -> _,
                        ),
                        deallocate: core::mem::transmute(
                            Self::deallocate as unsafe fn(&Self, _, _) -> _,
                        ),
                        grow: core::mem::transmute(Self::grow as unsafe fn(&Self, _, _, _) -> _),
                        grow_zeroed: core::mem::transmute(
                            Self::grow_zeroed as unsafe fn(&Self, _, _, _) -> _,
                        ),
                        shrink: core::mem::transmute(
                            Self::shrink as unsafe fn(&Self, _, _, _) -> _,
                        ),

                        clone: None,
                        drop: core::mem::transmute(
                            core::ptr::drop_in_place::<Self> as unsafe fn(_) -> _,
                        ),
                    }
                };
            }
            impl<A: Allocator + Send> AllocUnclone for A {}

            Ok(Self {
                alloc: unsafe { core::mem::transmute_copy(&core::mem::ManuallyDrop::new(alloc)) },
                vtable: <A as AllocUnclone>::VTABLE,
                __marker: PhantomData,
            })
        } else {
            Err(alloc)
        }
    }

    #[inline]
    pub fn try_new_clone<A: 'a + Clone + Allocator + Send>(alloc: A) -> Result<Self, A> {
        if core::mem::size_of::<A>() <= core::mem::size_of::<*const ()>()
            && core::mem::align_of::<A>() <= core::mem::align_of::<*const ()>()
        {
            trait AllocClone: Allocator + Send + Clone {
                const VTABLE: &'static VTable = &unsafe {
                    VTable {
                        allocate: core::mem::transmute(Self::allocate as fn(_, _) -> _),
                        allocate_zeroed: core::mem::transmute(
                            Self::allocate_zeroed as fn(_, _) -> _,
                        ),
                        deallocate: core::mem::transmute(
                            Self::deallocate as unsafe fn(_, _, _) -> _,
                        ),
                        grow: core::mem::transmute(Self::grow as unsafe fn(_, _, _, _) -> _),
                        grow_zeroed: core::mem::transmute(
                            Self::grow_zeroed as unsafe fn(_, _, _, _) -> _,
                        ),
                        shrink: core::mem::transmute(Self::shrink as unsafe fn(_, _, _, _) -> _),

                        clone: Some(|dst: *mut (), src: *const ()| {
                            (dst as *mut Self).write((*(src as *const Self)).clone())
                        }),
                        drop: core::mem::transmute(
                            core::ptr::drop_in_place::<Self> as unsafe fn(_) -> _,
                        ),
                    }
                };
            }
            impl<A: Allocator + Send + Clone> AllocClone for A {}

            Ok(Self {
                alloc: unsafe { core::mem::transmute_copy(&core::mem::ManuallyDrop::new(alloc)) },
                vtable: <A as AllocClone>::VTABLE,
                __marker: PhantomData,
            })
        } else {
            Err(alloc)
        }
    }

    #[inline]
    pub fn from_ref<A: Allocator + Sync>(alloc: &'a A) -> Self {
        match Self::try_new_clone(alloc) {
            Ok(me) => me,
            Err(_) => unreachable!(),
        }
    }

    #[inline]
    pub fn from_mut<A: Allocator + Send>(alloc: &'a mut A) -> Self {
        match Self::try_new_unclone(alloc) {
            Ok(me) => me,
            Err(_) => unreachable!(),
        }
    }

    #[inline]
    pub fn by_mut(&mut self) -> DynAlloc<'_> {
        DynAlloc::from_mut(self)
    }

    #[inline]
    pub fn cloneable(&self) -> bool {
        self.vtable.clone.is_some()
    }
}