ed_journals/modules/state/models/resolvers/
system_state_resolver.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
use std::collections::HashMap;

use crate::exobiology::{SpawnSourceStar, TargetSystem};
use chrono::{DateTime, Utc};
use serde::Serialize;

use crate::logs::fss_signal_discovered_event::FSSSignalDiscoveredEvent;
use crate::logs::scan_event::{ScanEvent, ScanEventKind};
use crate::logs::{LogEvent, LogEventContent};
use crate::modules::civilization::LocationInfo;
use crate::state::models::feed_result::FeedResult;
use crate::state::models::resolvers::planet_state_resolver::planet_species_entry::PlanetSpeciesEntry;
use crate::state::traits::state_resolver::StateResolver;
use crate::state::PlanetState;

#[derive(Serialize)]
pub struct SystemStateResolver {
    /// Information about the system.
    pub location_info: LocationInfo,

    /// Entries for state for planets in the system.
    pub planet_state: HashMap<u8, PlanetState>,

    /// Scans for each star in the system.
    pub star_scans: HashMap<u8, ScanEvent>,

    /// Scans for each cluster in the system.
    pub belt_scans: HashMap<u8, ScanEvent>,

    /// Times when the player was in the system.
    pub visits: Vec<DateTime<Utc>>,

    /// Times when the player's was in the system.
    pub carrier_visits: Vec<DateTime<Utc>>,

    /// The number of bodies that are present in the system.
    pub number_of_bodies: Option<u8>,

    /// Current progress of discovering all bodies in the system.
    pub progress: f32,

    /// Whether all bodies have been discovered in the system.
    pub all_found: bool,

    /// List of station signals.
    pub station_signals: Vec<FSSSignalDiscoveredEvent>,

    /// Information about the system needed for exobiology predictions.
    pub exobiology_system: TargetSystem,
}

impl StateResolver<LogEvent> for SystemStateResolver {
    fn feed(&mut self, input: &LogEvent) -> FeedResult {
        let Some(system_address) = input.content.system_address() else {
            return FeedResult::Skipped;
        };

        if system_address != self.location_info.system_address {
            return FeedResult::Skipped;
        }

        match &input.content {
            LogEventContent::FSSDiscoveryScan(event) => {
                self.number_of_bodies = Some(event.body_count);
                self.progress = event.progress;
            }
            LogEventContent::FSSAllBodiesFound(event) => {
                self.number_of_bodies = Some(event.count);
                self.all_found = true;
            }
            LogEventContent::FSSSignalDiscovered(event) => {
                if event.is_station {
                    self.station_signals.push(event.clone());
                }
            }
            LogEventContent::Scan(event) => {
                match &event.kind {
                    ScanEventKind::Star(star) => {
                        self.exobiology_system.stars_in_system.insert(
                            event.body_id,
                            SpawnSourceStar {
                                class: star.star_type.clone(),
                                luminosity: star.luminosity.clone(),
                            },
                        );

                        self.star_scans.insert(event.body_id, event.clone());
                    }
                    ScanEventKind::Planet(planet) => {
                        self.planet_state
                            .entry(event.body_id)
                            .or_insert_with(|| PlanetState::from((event, planet)));

                        self.exobiology_system
                            .planet_classes_in_system
                            .insert(planet.planet_class.clone());
                    }
                    ScanEventKind::BeltCluster(_) => {
                        self.belt_scans.insert(event.body_id, event.clone());
                    }
                }

                if let Some(total_bodies) = self.number_of_bodies {
                    let new_factor = self.nr_of_scanned_bodies() as f32 / total_bodies as f32;

                    if new_factor > self.progress {
                        self.progress = new_factor;
                    }
                }
            }

            _ => {
                if let Some(body_id) = input.content.body_id() {
                    let Some(body) = self.planet_state.get_mut(&body_id) else {
                        return FeedResult::Later;
                    };

                    body.feed(input);
                }
            }
        }

        FeedResult::Accepted
    }

    fn flush_inner(&mut self) {
        for body in self.planet_state.values_mut() {
            body.flush_inner();
        }
    }
}

impl SystemStateResolver {
    pub fn visit(&mut self, date_time: &DateTime<Utc>) {
        self.visits.push(*date_time);
    }

    /// Returns the total number of scans, which includes planets, stars and belt clusters.
    pub fn nr_of_scans(&self) -> usize {
        self.planet_state.len() + self.star_scans.len() + self.belt_scans.len()
    }

    /// Returns the total number of scanned bodies, which includes planets and stars. Take note
    /// that this does not include scanned belt clusters as they are not counted towards the total
    /// number of scanned bodies in game.
    pub fn nr_of_scanned_bodies(&self) -> usize {
        self.planet_state.len() + self.star_scans.len()
    }

    /// Returns all the scan events for this system.
    pub fn all_scans(&self) -> Vec<&ScanEvent> {
        let mut result = Vec::with_capacity(self.nr_of_scans());

        for planet in self.planet_state.values() {
            result.push(&planet.scan);
        }

        for star_scan in self.star_scans.values() {
            result.push(star_scan)
        }

        for belt_scan in self.belt_scans.values() {
            result.push(belt_scan)
        }

        result
    }

    pub fn carrier_visit(&mut self, date_time: &DateTime<Utc>) {
        self.carrier_visits.push(*date_time);
    }

    pub fn get_spawnable_species(&self, body_id: u8) -> Option<Vec<PlanetSpeciesEntry>> {
        Some(
            self.planet_state
                .get(&body_id)?
                .get_planet_species(&self.exobiology_system),
        )
    }
}

#[cfg(test)]
mod tests {
    use std::env::current_dir;

    use crate::exobiology::SpawnSource;
    use crate::logs::blocking::LogDirReader;
    use crate::state::traits::state_resolver::StateResolver;
    use crate::state::GameState;

    #[test]
    fn spawnable_species_no_false_negatives() {
        let dir_path = current_dir().unwrap().join("test-files").join("journals");

        let log_dir = LogDirReader::open(dir_path);

        let mut state = GameState::default();

        for entry in log_dir {
            state.feed(&entry.unwrap());
        }

        let mut failed = 0;

        // Blacklisted bodies that should not be tested
        let blacklisted_bodies: Vec<String> = vec![
            "Syniechia CB-U d4-8 B 5".to_string(), // Commander did not scan the body before landing
            "Prie Chraea VL-L c21-0 1 c".to_string(), // OsseusDiscus spawned on a body with a non-thin-water atmosphere
            "Syniechou RZ-Z c16-0 7 b a".to_string(), // OsseusDiscus spawned on a body with a non-thin-water atmosphere
            "Flyeia Prou RH-C b46-0 A 8".to_string(), // TubusSororibus spawned on a body with a gravity of 0.52g and temperature of 260K
            "Graea Proae OT-O d7-15 A 4".to_string(), // FrutexaMetallicum, OsseusPellebantus and TussockPropagito spawning on a body that's 0.4K too warm
            "Ruvoe HW-E c11-5 3 b".to_string(), // BacteriumOmentum spawning on a body with a non-neon atmosphere
        ];

        for commander in state.commanders.values() {
            for system in commander.log_state.systems.values() {
                for (body_id, planet_state) in &system.planet_state {
                    if blacklisted_bodies.contains(&planet_state.scan.body_name) {
                        continue;
                    }

                    let expected_species = system.get_spawnable_species(*body_id).unwrap();

                    let spawn_source = SpawnSource {
                        target_system: &system.exobiology_system,
                        target_planet: &planet_state.exobiology_body,
                    };

                    for species in expected_species {
                        let conditions = species.specie.spawn_conditions();

                        let failing_conditions = conditions
                            .iter()
                            .filter(|condition| !spawn_source.satisfies_spawn_condition(condition))
                            .collect::<Vec<_>>();

                        if !failing_conditions.is_empty() {
                            failed += 1;
                            println!(
                                "The following conditions failed for '{:?}' on body '{}': {:?}\n{:#?}",
                                species, planet_state.scan.body_name, failing_conditions, spawn_source
                            );
                        }
                    }
                }
            }
        }

        // In case of test failure, see the logs printed above.
        assert_eq!(failed, 0);

        // let logs = log_dir.journal_logs().unwrap();

        // // let mut state = ExobiologyState::new();
        //
        // // Species found in the logs, grouped by body name.
        // // These are the value we will compare against the calculated spawnable species.
        // let mut expected_species = HashMap::<String, HashSet<Species>>::new();
        // for journal in &logs {
        //     let reader = journal.create_blocking_reader().unwrap();
        //
        //     let mut body_name = String::new();
        //
        //     for entry in reader.flatten() {
        //         state.feed_event(&entry);
        //
        //         if let LogEventContent::Location(location) = &entry.content {
        //             body_name.clone_from(&location.location_info.body)
        //         }
        //
        //         if let LogEventContent::Touchdown(touchdown) = &entry.content {
        //             body_name.clone_from(&touchdown.body);
        //         }
        //
        //         if let LogEventContent::ScanOrganic(organic) = &entry.content {
        //             expected_species
        //                 .entry(body_name.clone())
        //                 .or_default()
        //                 .insert(organic.species.clone());
        //         }
        //     }
        // }
        //

        //
        // let mut failed = 0;
        //
        // // Check each spawn source to see if the calculated spawnable species match the expected species.
        // for (body_name, expected_species) in expected_species
        //     .iter()
        //     .filter(|(body, _)| !blacklisted_bodies.contains(body))
        // {
        //     let spawn_source = state.for_body(body_name);
        //

        // }
        //
    }
}