1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
// -*- mode: rust; -*-
//
// This file is part of ed25519-dalek.
// Copyright (c) 2017-2019 isis lovecruft
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>
//! A Rust implementation of ed25519 key generation, signing, and verification.
//!
//! # Example
//!
//! Creating an ed25519 signature on a message is simple.
//!
//! First, we need to generate a `SigningKey`, which includes both public and
//! secret halves of an asymmetric key. To do so, we need a cryptographically
//! secure pseudorandom number generator (CSPRNG). For this example, we'll use
//! the operating system's builtin PRNG:
//!
#![cfg_attr(feature = "rand_core", doc = "```")]
#![cfg_attr(not(feature = "rand_core"), doc = "```ignore")]
//! # fn main() {
//! use rand::rngs::OsRng;
//! use ed25519_dalek::SigningKey;
//! use ed25519_dalek::Signature;
//!
//! let mut csprng = OsRng;
//! let signing_key: SigningKey = SigningKey::generate(&mut csprng);
//! # }
//! ```
//!
//! We can now use this `signing_key` to sign a message:
//!
#![cfg_attr(feature = "rand_core", doc = "```")]
#![cfg_attr(not(feature = "rand_core"), doc = "```ignore")]
//! # fn main() {
//! # use rand::rngs::OsRng;
//! # use ed25519_dalek::SigningKey;
//! # let mut csprng = OsRng;
//! # let signing_key: SigningKey = SigningKey::generate(&mut csprng);
//! use ed25519_dalek::{Signature, Signer};
//! let message: &[u8] = b"This is a test of the tsunami alert system.";
//! let signature: Signature = signing_key.sign(message);
//! # }
//! ```
//!
//! As well as to verify that this is, indeed, a valid signature on
//! that `message`:
//!
#![cfg_attr(feature = "rand_core", doc = "```")]
#![cfg_attr(not(feature = "rand_core"), doc = "```ignore")]
//! # fn main() {
//! # use rand::rngs::OsRng;
//! # use ed25519_dalek::{SigningKey, Signature, Signer};
//! # let mut csprng = OsRng;
//! # let signing_key: SigningKey = SigningKey::generate(&mut csprng);
//! # let message: &[u8] = b"This is a test of the tsunami alert system.";
//! # let signature: Signature = signing_key.sign(message);
//! use ed25519_dalek::Verifier;
//! assert!(signing_key.verify(message, &signature).is_ok());
//! # }
//! ```
//!
//! Anyone else, given the `public` half of the `signing_key` can also easily
//! verify this signature:
//!
#![cfg_attr(feature = "rand_core", doc = "```")]
#![cfg_attr(not(feature = "rand_core"), doc = "```ignore")]
//! # fn main() {
//! # use rand::rngs::OsRng;
//! # use ed25519_dalek::SigningKey;
//! # use ed25519_dalek::Signature;
//! # use ed25519_dalek::Signer;
//! use ed25519_dalek::{VerifyingKey, Verifier};
//! # let mut csprng = OsRng;
//! # let signing_key: SigningKey = SigningKey::generate(&mut csprng);
//! # let message: &[u8] = b"This is a test of the tsunami alert system.";
//! # let signature: Signature = signing_key.sign(message);
//!
//! let verifying_key: VerifyingKey = signing_key.verifying_key();
//! assert!(verifying_key.verify(message, &signature).is_ok());
//! # }
//! ```
//!
//! ## Serialisation
//!
//! `VerifyingKey`s, `SecretKey`s, `SigningKey`s, and `Signature`s can be serialised
//! into byte-arrays by calling `.to_bytes()`. It's perfectly acceptable and
//! safe to transfer and/or store those bytes. (Of course, never transfer your
//! secret key to anyone else, since they will only need the public key to
//! verify your signatures!)
//!
#![cfg_attr(feature = "rand_core", doc = "```")]
#![cfg_attr(not(feature = "rand_core"), doc = "```ignore")]
//! # fn main() {
//! # use rand::rngs::OsRng;
//! # use ed25519_dalek::{SigningKey, Signature, Signer, VerifyingKey};
//! use ed25519_dalek::{PUBLIC_KEY_LENGTH, SECRET_KEY_LENGTH, KEYPAIR_LENGTH, SIGNATURE_LENGTH};
//! # let mut csprng = OsRng;
//! # let signing_key: SigningKey = SigningKey::generate(&mut csprng);
//! # let message: &[u8] = b"This is a test of the tsunami alert system.";
//! # let signature: Signature = signing_key.sign(message);
//!
//! let verifying_key_bytes: [u8; PUBLIC_KEY_LENGTH] = signing_key.verifying_key().to_bytes();
//! let secret_key_bytes: [u8; SECRET_KEY_LENGTH] = signing_key.to_bytes();
//! let signing_key_bytes: [u8; KEYPAIR_LENGTH] = signing_key.to_keypair_bytes();
//! let signature_bytes: [u8; SIGNATURE_LENGTH] = signature.to_bytes();
//! # }
//! ```
//!
//! And similarly, decoded from bytes with `::from_bytes()`:
//!
#![cfg_attr(feature = "rand_core", doc = "```")]
#![cfg_attr(not(feature = "rand_core"), doc = "```ignore")]
//! # use core::convert::{TryFrom, TryInto};
//! # use rand::rngs::OsRng;
//! # use ed25519_dalek::{SigningKey, Signature, Signer, VerifyingKey, SecretKey, SignatureError};
//! # use ed25519_dalek::{PUBLIC_KEY_LENGTH, SECRET_KEY_LENGTH, KEYPAIR_LENGTH, SIGNATURE_LENGTH};
//! # fn do_test() -> Result<(SigningKey, VerifyingKey, Signature), SignatureError> {
//! # let mut csprng = OsRng;
//! # let signing_key_orig: SigningKey = SigningKey::generate(&mut csprng);
//! # let message: &[u8] = b"This is a test of the tsunami alert system.";
//! # let signature_orig: Signature = signing_key_orig.sign(message);
//! # let verifying_key_bytes: [u8; PUBLIC_KEY_LENGTH] = signing_key_orig.verifying_key().to_bytes();
//! # let signing_key_bytes: [u8; SECRET_KEY_LENGTH] = signing_key_orig.to_bytes();
//! # let signature_bytes: [u8; SIGNATURE_LENGTH] = signature_orig.to_bytes();
//! #
//! let verifying_key: VerifyingKey = VerifyingKey::from_bytes(&verifying_key_bytes)?;
//! let signing_key: SigningKey = SigningKey::from_bytes(&signing_key_bytes);
//! let signature: Signature = Signature::try_from(&signature_bytes[..])?;
//! #
//! # Ok((signing_key, verifying_key, signature))
//! # }
//! # fn main() {
//! # do_test();
//! # }
//! ```
//!
//! ### PKCS#8 Key Encoding
//!
//! PKCS#8 is a private key format with support for multiple algorithms.
//! It can be encoded as binary (DER) or text (PEM).
//!
//! You can recognize PEM-encoded PKCS#8 keys by the following:
//!
//! ```text
//! -----BEGIN PRIVATE KEY-----
//! ```
//!
//! To use PKCS#8, you need to enable the `pkcs8` crate feature.
//!
//! The following traits can be used to decode/encode [`SigningKey`] and
//! [`VerifyingKey`] as PKCS#8. Note that [`pkcs8`] is re-exported from the
//! toplevel of the crate:
//!
//! - [`pkcs8::DecodePrivateKey`]: decode private keys from PKCS#8
//! - [`pkcs8::EncodePrivateKey`]: encode private keys to PKCS#8
//! - [`pkcs8::DecodePublicKey`]: decode public keys from PKCS#8
//! - [`pkcs8::EncodePublicKey`]: encode public keys to PKCS#8
//!
//! #### Example
//!
//! NOTE: this requires the `pem` crate feature.
//!
#![cfg_attr(feature = "pem", doc = "```")]
#![cfg_attr(not(feature = "pem"), doc = "```ignore")]
//! use ed25519_dalek::{VerifyingKey, pkcs8::DecodePublicKey};
//!
//! let pem = "-----BEGIN PUBLIC KEY-----
//! MCowBQYDK2VwAyEAGb9ECWmEzf6FQbrBZ9w7lshQhqowtrbLDFw4rXAxZuE=
//! -----END PUBLIC KEY-----";
//!
//! let verifying_key = VerifyingKey::from_public_key_pem(pem)
//! .expect("invalid public key PEM");
//! ```
//!
//! ### Using Serde
//!
//! If you prefer the bytes to be wrapped in another serialisation format, all
//! types additionally come with built-in [serde](https://serde.rs) support by
//! building `ed25519-dalek` via:
//!
//! ```bash
//! $ cargo build --features="serde"
//! ```
//!
//! They can be then serialised into any of the wire formats which serde supports.
//! For example, using [bincode](https://github.com/TyOverby/bincode):
//!
#![cfg_attr(all(feature = "rand_core", feature = "serde"), doc = "```")]
#![cfg_attr(not(all(feature = "rand_core", feature = "serde")), doc = "```ignore")]
//! # fn main() {
//! # use rand::rngs::OsRng;
//! # use ed25519_dalek::{SigningKey, Signature, Signer, Verifier, VerifyingKey};
//! use bincode::serialize;
//! # let mut csprng = OsRng;
//! # let signing_key: SigningKey = SigningKey::generate(&mut csprng);
//! # let message: &[u8] = b"This is a test of the tsunami alert system.";
//! # let signature: Signature = signing_key.sign(message);
//! # let verifying_key: VerifyingKey = signing_key.verifying_key();
//! # let verified: bool = verifying_key.verify(message, &signature).is_ok();
//!
//! let encoded_verifying_key: Vec<u8> = serialize(&verifying_key).unwrap();
//! let encoded_signature: Vec<u8> = serialize(&signature).unwrap();
//! # }
//! ```
//!
//! After sending the `encoded_verifying_key` and `encoded_signature`, the
//! recipient may deserialise them and verify:
//!
#![cfg_attr(all(feature = "rand_core", feature = "serde"), doc = "```")]
#![cfg_attr(not(all(feature = "rand_core", feature = "serde")), doc = "```ignore")]
//! # fn main() {
//! # use rand::rngs::OsRng;
//! # use ed25519_dalek::{SigningKey, Signature, Signer, Verifier, VerifyingKey};
//! # use bincode::serialize;
//! use bincode::deserialize;
//!
//! # let mut csprng = OsRng;
//! # let signing_key: SigningKey = SigningKey::generate(&mut csprng);
//! let message: &[u8] = b"This is a test of the tsunami alert system.";
//! # let signature: Signature = signing_key.sign(message);
//! # let verifying_key: VerifyingKey = signing_key.verifying_key();
//! # let verified: bool = verifying_key.verify(message, &signature).is_ok();
//! # let encoded_verifying_key: Vec<u8> = serialize(&verifying_key).unwrap();
//! # let encoded_signature: Vec<u8> = serialize(&signature).unwrap();
//! let decoded_verifying_key: VerifyingKey = deserialize(&encoded_verifying_key).unwrap();
//! let decoded_signature: Signature = deserialize(&encoded_signature).unwrap();
//!
//! # assert_eq!(verifying_key, decoded_verifying_key);
//! # assert_eq!(signature, decoded_signature);
//! #
//! let verified: bool = decoded_verifying_key.verify(&message, &decoded_signature).is_ok();
//!
//! assert!(verified);
//! # }
//! ```
#![no_std]
#![warn(future_incompatible, rust_2018_idioms)]
#![deny(missing_docs)] // refuse to compile if documentation is missing
#![deny(clippy::unwrap_used)] // don't allow unwrap
#![cfg_attr(not(test), forbid(unsafe_code))]
#![cfg_attr(docsrs, feature(doc_auto_cfg, doc_cfg, doc_cfg_hide))]
#![cfg_attr(docsrs, doc(cfg_hide(docsrs)))]
#[cfg(feature = "batch")]
extern crate alloc;
#[cfg(any(feature = "std", test))]
#[macro_use]
extern crate std;
pub use ed25519;
#[cfg(feature = "batch")]
mod batch;
mod constants;
#[cfg(feature = "digest")]
mod context;
mod errors;
mod signature;
mod signing;
mod verifying;
#[cfg(feature = "hazmat")]
pub mod hazmat;
#[cfg(not(feature = "hazmat"))]
mod hazmat;
#[cfg(feature = "digest")]
pub use curve25519_dalek::digest::Digest;
#[cfg(feature = "digest")]
pub use sha2::Sha512;
#[cfg(feature = "batch")]
pub use crate::batch::*;
pub use crate::constants::*;
#[cfg(feature = "digest")]
pub use crate::context::Context;
pub use crate::errors::*;
pub use crate::signing::*;
pub use crate::verifying::*;
// Re-export the `Signer` and `Verifier` traits from the `signature` crate
#[cfg(feature = "digest")]
pub use ed25519::signature::{DigestSigner, DigestVerifier};
pub use ed25519::signature::{Signer, Verifier};
pub use ed25519::Signature;
#[cfg(feature = "pkcs8")]
pub use ed25519::pkcs8;