1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
use std::convert::{TryFrom, TryInto};

use curve25519_dalek::{
    edwards::{CompressedEdwardsY, EdwardsPoint},
    scalar::Scalar,
};
use sha2::{Digest, Sha512};

use crate::{constants, Error, Signature};

/// A refinement type for `[u8; 32]` indicating that the bytes represent an
/// encoding of an Ed25519 verification key.
///
/// This is useful for representing an encoded verification key, while the
/// [`VerificationKey`] type in this library caches other decoded state used in
/// signature verification.  
///
/// A `VerificationKeyBytes` can be used to verify a single signature using the
/// following idiom:
/// ```
/// use std::convert::TryFrom;
/// # use rand::thread_rng;
/// # use ed25519_zebra::*;
/// # let msg = b"Zcash";
/// # let sk = SigningKey::new(thread_rng());
/// # let sig = sk.sign(msg);
/// # let vk_bytes = VerificationKeyBytes::from(&sk);
/// VerificationKey::try_from(vk_bytes)
///     .and_then(|vk| vk.verify(&sig, msg));
/// ```
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct VerificationKeyBytes(pub(crate) [u8; 32]);

impl core::fmt::Debug for VerificationKeyBytes {
    fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
        fmt.debug_tuple("VerificationKeyBytes")
            .field(&hex::encode(&self.0))
            .finish()
    }
}

impl AsRef<[u8]> for VerificationKeyBytes {
    fn as_ref(&self) -> &[u8] {
        &self.0[..]
    }
}

impl TryFrom<&[u8]> for VerificationKeyBytes {
    type Error = Error;
    fn try_from(slice: &[u8]) -> Result<VerificationKeyBytes, Error> {
        if slice.len() == 32 {
            let mut bytes = [0u8; 32];
            bytes[..].copy_from_slice(slice);
            Ok(bytes.into())
        } else {
            Err(Error::InvalidSliceLength)
        }
    }
}

impl From<[u8; 32]> for VerificationKeyBytes {
    fn from(bytes: [u8; 32]) -> VerificationKeyBytes {
        VerificationKeyBytes(bytes)
    }
}

impl From<VerificationKeyBytes> for [u8; 32] {
    fn from(refined: VerificationKeyBytes) -> [u8; 32] {
        refined.0
    }
}

/// A valid Ed25519 verification key.
///
/// This is also called a public key by other implementations.
///
/// This type holds decompressed state used in signature verification; if the
/// verification key may not be used immediately, it is probably better to use
/// [`VerificationKeyBytes`], which is a refinement type for `[u8; 32]`.
///
/// ## Zcash-specific consensus properties
///
/// Ed25519 checks are described in [§5.4.5][ps] of the Zcash protocol
/// specification. However, it is not clear that the protocol specification
/// matches the implementation in `libsodium` `1.0.15` used by `zcashd`. Note
/// that the precise version is important because `libsodium` changed validation
/// rules in point releases.
///
/// The spec says that a verification key `A` is
///
/// > a point of order `l` on the Ed25519 curve, in the encoding specified by…
///
/// but `libsodium` `1.0.15` does not check this. Instead it only checks whether
/// the encoding of `A` is an encoding of a point on the curve and that the
/// encoding is not all zeros. This implementation matches the `libsodium`
/// behavior.  This has implications for signature verification behaviour, as noted
/// in the [`VerificationKey::verify`] documentation.
///
/// [ps]: https://zips.z.cash/protocol/protocol.pdf#concretejssig
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serde", serde(try_from = "VerificationKeyBytes"))]
#[cfg_attr(feature = "serde", serde(into = "VerificationKeyBytes"))]
#[allow(non_snake_case)]
pub struct VerificationKey {
    pub(crate) A_bytes: VerificationKeyBytes,
    pub(crate) minus_A: EdwardsPoint,
}

impl From<VerificationKey> for VerificationKeyBytes {
    fn from(vk: VerificationKey) -> VerificationKeyBytes {
        vk.A_bytes
    }
}

impl AsRef<[u8]> for VerificationKey {
    fn as_ref(&self) -> &[u8] {
        &self.A_bytes.0[..]
    }
}

impl From<VerificationKey> for [u8; 32] {
    fn from(vk: VerificationKey) -> [u8; 32] {
        vk.A_bytes.0
    }
}

impl TryFrom<VerificationKeyBytes> for VerificationKey {
    type Error = Error;
    #[allow(non_snake_case)]
    fn try_from(bytes: VerificationKeyBytes) -> Result<Self, Self::Error> {
        // libsodium behavior: public key bytes must not be all 0
        // libsodium 1.0.15 crypto_sign/ed25519/ref10/open.c:138-143
        // Note: this is different from the description in the spec.
        if bytes.0 == [0; 32] {
            return Err(Error::MalformedPublicKey);
        }

        let A = CompressedEdwardsY(bytes.0)
            .decompress()
            .ok_or(Error::MalformedPublicKey)?;

        Ok(VerificationKey {
            A_bytes: bytes,
            minus_A: -A,
        })
    }
}

impl TryFrom<&[u8]> for VerificationKey {
    type Error = Error;
    fn try_from(slice: &[u8]) -> Result<VerificationKey, Error> {
        VerificationKeyBytes::try_from(slice).and_then(|vkb| vkb.try_into())
    }
}

impl TryFrom<[u8; 32]> for VerificationKey {
    type Error = Error;
    fn try_from(bytes: [u8; 32]) -> Result<Self, Self::Error> {
        VerificationKeyBytes::from(bytes).try_into()
    }
}

impl VerificationKey {
    /// Verify a purported `signature` on the given `msg`.
    ///
    /// ## Zcash-specific consensus properties
    ///
    /// Ed25519 checks are described in [§5.4.5][ps] of the Zcash protocol
    /// specification. Ed25519 validation is not well-specified, and the original
    /// implementation of JoinSplit signatures for `zcashd` inherited its precise
    /// validation rules from a specific build configuration of `libsodium`
    /// `1.0.15`. Note that the precise version is important because `libsodium`
    /// changed validation rules in point releases.
    ///
    /// The additional validation checks are that:
    ///
    /// * `s` MUST represent an integer less than the prime `l`, per `libsodium`
    /// `1.0.15` `crypto_sign/ed25519/ref10/open.c:126`;
    ///
    /// * `R` MUST NOT be one of the excluded encodings, per `libsodium` `1.0.15`
    /// `crypto_sign/ed25519/ref10/open.c:127`;
    ///
    /// * The public key bytes must not be all 0, per `libsodium` `1.0.15`
    /// `crypto_sign/ed25519/ref10/open.c:138-143`, which we maintain as an
    /// invariant on the `VerificationKey` type.
    ///
    /// [ps]: https://zips.z.cash/protocol/protocol.pdf#concretejssig
    #[allow(non_snake_case)]
    pub fn verify(&self, signature: &Signature, msg: &[u8]) -> Result<(), Error> {
        // Zcash consensus rule: `s` MUST represent an integer less than the prime `l`.
        // libsodium 1.0.15 crypto_sign/ed25519/ref10/open.c:126
        let s = Scalar::from_canonical_bytes(signature.s_bytes).ok_or(Error::InvalidSignature)?;

        // Zcash consensus rule: `R` MUST NOT be one of the encodings excluded by libsodium 1.0.15
        // libsodium 1.0.15 crypto_sign/ed25519/ref10/open.c:127
        for excluded in &constants::EXCLUDED_POINT_ENCODINGS {
            if &signature.R_bytes == excluded {
                return Err(Error::InvalidSignature);
            }
        }

        // libsodium behavior: public key bytes must not be all 0
        // libsodium 1.0.15 crypto_sign/ed25519/ref10/open.c:138-143
        // Note: this is different from the description in the spec.
        // No-op, since we maintain this invariant in the PublicKey type.

        let k = Scalar::from_hash(
            Sha512::default()
                .chain(&signature.R_bytes[..])
                .chain(&self.A_bytes.0[..])
                .chain(msg),
        );

        // We expect to recompute R as [s]B - [k]A = [k](-A) + [s]B.
        let R = EdwardsPoint::vartime_double_scalar_mul_basepoint(&k, &self.minus_A, &s);

        if R.compress().to_bytes() == signature.R_bytes {
            Ok(())
        } else {
            Err(Error::InvalidSignature)
        }
    }
}