1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
//! Performs batch Ed25519 signature verification. //! //! Batch verification asks whether *all* signatures in some set are valid, //! rather than asking whether *each* of them is valid. This allows sharing //! computations among all signature verifications, performing less work overall //! at the cost of higher latency (the entire batch must complete), complexity of //! caller code (which must assemble a batch of signatures across work-items), //! and loss of the ability to easily pinpoint failing signatures. //! //! In addition to these general tradeoffs, design flaws in Ed25519 specifically //! mean that batched verification may not agree with individual verification. //! Some signatures may verify as part of a batch but not on their own. //! This problem is fixed by [ZIP215], a precise specification for edge cases //! in Ed25519 signature validation that ensures that batch verification agrees //! with individual verification in all cases. //! //! This crate implements ZIP215, so batch verification always agrees with //! individual verification, but this is not guaranteed by other implementations. //! **Be extremely careful when using Ed25519 in a consensus-critical context //! like a blockchain.** //! //! This batch verification implementation is adaptive in the sense that it //! detects multiple signatures created with the same verification key and //! automatically coalesces terms in the final verification equation. In the //! limiting case where all signatures in the batch are made with the same //! verification key, coalesced batch verification runs twice as fast as ordinary //! batch verification. //! //! ![benchmark](https://www.zfnd.org/images/coalesced-batch-graph.png) //! //! This optimization doesn't help much with Zcash, where public keys are random, //! but could be useful in proof-of-stake systems where signatures come from a //! set of validators (provided that system uses the ZIP215 rules). //! //! # Example //! ``` //! # use ed25519_zebra::*; //! let mut batch = batch::Verifier::new(); //! for _ in 0..32 { //! let sk = SigningKey::new(rand::thread_rng()); //! let vk_bytes = VerificationKeyBytes::from(&sk); //! let msg = b"BatchVerifyTest"; //! let sig = sk.sign(&msg[..]); //! batch.queue((vk_bytes, sig, &msg[..])); //! } //! assert!(batch.verify(rand::thread_rng()).is_ok()); //! ``` //! //! [ZIP215]: https://github.com/zcash/zips/blob/master/zip-0215.rst use std::{collections::HashMap, convert::TryFrom}; use curve25519_dalek::{ edwards::{CompressedEdwardsY, EdwardsPoint}, scalar::Scalar, traits::{IsIdentity, VartimeMultiscalarMul}, }; use rand_core::{CryptoRng, RngCore}; use sha2::{Digest, Sha512}; use crate::{Error, Signature, VerificationKey, VerificationKeyBytes}; // Shim to generate a u128 without importing `rand`. fn gen_u128<R: RngCore + CryptoRng>(mut rng: R) -> u128 { let mut bytes = [0u8; 16]; rng.fill_bytes(&mut bytes[..]); u128::from_le_bytes(bytes) } /// A batch verification item. /// /// This struct exists to allow batch processing to be decoupled from the /// lifetime of the message. This is useful when using the batch verification API /// in an async context. #[derive(Clone, Debug)] pub struct Item { vk_bytes: VerificationKeyBytes, sig: Signature, k: Scalar, } impl<'msg, M: AsRef<[u8]> + ?Sized> From<(VerificationKeyBytes, Signature, &'msg M)> for Item { fn from(tup: (VerificationKeyBytes, Signature, &'msg M)) -> Self { let (vk_bytes, sig, msg) = tup; // Compute k now to avoid dependency on the msg lifetime. let k = Scalar::from_hash( Sha512::default() .chain(&sig.R_bytes[..]) .chain(&vk_bytes.0[..]) .chain(msg), ); Self { vk_bytes, sig, k } } } impl Item { /// Perform non-batched verification of this `Item`. /// /// This is useful (in combination with `Item::clone`) for implementing fallback /// logic when batch verification fails. In contrast to /// [`VerificationKey::verify`](crate::VerificationKey::verify), which requires /// borrowing the message data, the `Item` type is unlinked from the lifetime of /// the message. pub fn verify_single(self) -> Result<(), Error> { VerificationKey::try_from(self.vk_bytes) .and_then(|vk| vk.verify_prehashed(&self.sig, self.k)) } } /// A batch verification context. #[derive(Default)] pub struct Verifier { /// Signature data queued for verification. signatures: HashMap<VerificationKeyBytes, Vec<(Scalar, Signature)>>, /// Caching this count avoids a hash traversal to figure out /// how much to preallocate. batch_size: usize, } impl Verifier { /// Construct a new batch verifier. pub fn new() -> Verifier { Verifier::default() } /// Queue a (key, signature, message) tuple for verification. pub fn queue<I: Into<Item>>(&mut self, item: I) { let Item { vk_bytes, sig, k } = item.into(); self.signatures .entry(vk_bytes) // The common case is 1 signature per public key. // We could also consider using a smallvec here. .or_insert_with(|| Vec::with_capacity(1)) .push((k, sig)); self.batch_size += 1; } /// Perform batch verification, returning `Ok(())` if all signatures were /// valid and `Err` otherwise. /// /// # Warning /// /// Ed25519 has different verification rules for batched and non-batched /// verifications. This function does not have the same verification criteria /// as individual verification, which may reject some signatures this method /// accepts. #[allow(non_snake_case)] pub fn verify<R: RngCore + CryptoRng>(self, mut rng: R) -> Result<(), Error> { // The batch verification equation is // // [-sum(z_i * s_i)]B + sum([z_i]R_i) + sum([z_i * k_i]A_i) = 0. // // where for each signature i, // - A_i is the verification key; // - R_i is the signature's R value; // - s_i is the signature's s value; // - k_i is the hash of the message and other data; // - z_i is a random 128-bit Scalar. // // Normally n signatures would require a multiscalar multiplication of // size 2*n + 1, together with 2*n point decompressions (to obtain A_i // and R_i). However, because we store batch entries in a HashMap // indexed by the verification key, we can "coalesce" all z_i * k_i // terms for each distinct verification key into a single coefficient. // // For n signatures from m verification keys, this approach instead // requires a multiscalar multiplication of size n + m + 1 together with // n + m point decompressions. When m = n, so all signatures are from // distinct verification keys, this is as efficient as the usual method. // However, when m = 1 and all signatures are from a single verification // key, this is nearly twice as fast. let m = self.signatures.keys().count(); let mut A_coeffs = Vec::with_capacity(m); let mut As = Vec::with_capacity(m); let mut R_coeffs = Vec::with_capacity(self.batch_size); let mut Rs = Vec::with_capacity(self.batch_size); let mut B_coeff = Scalar::zero(); for (vk_bytes, sigs) in self.signatures.iter() { let A = CompressedEdwardsY(vk_bytes.0) .decompress() .ok_or(Error::InvalidSignature)?; let mut A_coeff = Scalar::zero(); for (k, sig) in sigs.iter() { let R = CompressedEdwardsY(sig.R_bytes) .decompress() .ok_or(Error::InvalidSignature)?; let s = Scalar::from_canonical_bytes(sig.s_bytes).ok_or(Error::InvalidSignature)?; let z = Scalar::from(gen_u128(&mut rng)); B_coeff -= z * s; Rs.push(R); R_coeffs.push(z); A_coeff += z * k; } As.push(A); A_coeffs.push(A_coeff); } use curve25519_dalek::constants::ED25519_BASEPOINT_POINT as B; use std::iter::once; let check = EdwardsPoint::vartime_multiscalar_mul( once(&B_coeff).chain(A_coeffs.iter()).chain(R_coeffs.iter()), once(&B).chain(As.iter()).chain(Rs.iter()), ); if check.mul_by_cofactor().is_identity() { Ok(()) } else { Err(Error::InvalidSignature) } } }