1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
//! Optimized simplified Shallue-van de Woestijne-Ulas methods.
//!
//! <https://eprint.iacr.org/2009/340.pdf>
use ff::Field;
use subtle::Choice;
/// The Optimized Simplified Shallue-van de Woestijne-Ulas parameters
pub struct OsswuMapParams<F>
where
F: Field,
{
/// The first constant term
pub c1: [u64; 4],
/// The second constant term
pub c2: F,
/// The ISO A variable or Curve A variable
pub map_a: F,
/// The ISO A variable or Curve A variable
pub map_b: F,
/// The Z parameter
pub z: F,
}
/// Trait for determining the parity of the field
pub trait Sgn0 {
/// Return the parity of the field
/// 1 == negative
/// 0 == non-negative
fn sgn0(&self) -> Choice;
}
/// The optimized simplified Shallue-van de Woestijne-Ulas method
/// for mapping elliptic curve scalars to affine points.
pub trait OsswuMap: Field + Sgn0 {
/// The OSSWU parameters for mapping the field to affine points.
/// For Weierstrass curves having A==0 or B==0, the parameters
/// should be for isogeny where A≠0 and B≠0.
const PARAMS: OsswuMapParams<Self>;
/// Convert this field element into an affine point on the elliptic curve
/// returning (X, Y). For Weierstrass curves having A==0 or B==0
/// the result is a point on an isogeny.
fn osswu(&self) -> (Self, Self) {
let tv1 = self.square(); // u^2
let tv3 = Self::PARAMS.z * tv1; // Z * u^2
let mut tv2 = tv3.square(); // tv3^2
let mut xd = tv2 + tv3; // tv3^2 + tv3
let x1n = Self::PARAMS.map_b * (xd + Self::one()); // B * (xd + 1)
xd *= -Self::PARAMS.map_a; // -A * xd
let tv = Self::PARAMS.z * Self::PARAMS.map_a;
xd.conditional_assign(&tv, xd.is_zero());
tv2 = xd.square(); //xd^2
let gxd = tv2 * xd; // xd^3
tv2 *= Self::PARAMS.map_a; // A * tv2
let mut gx1 = x1n * (tv2 + x1n.square()); //x1n *(tv2 + x1n^2)
tv2 = gxd * Self::PARAMS.map_b; // B * gxd
gx1 += tv2; // gx1 + tv2
let mut tv4 = gxd.square(); // gxd^2
tv2 = gx1 * gxd; // gx1 * gxd
tv4 *= tv2;
let y1 = tv4.pow_vartime(&Self::PARAMS.c1) * tv2; // tv4^C1 * tv2
let x2n = tv3 * x1n; // tv3 * x1n
let y2 = y1 * Self::PARAMS.c2 * tv1 * self; // y1 * c2 * tv1 * u
tv2 = y1.square() * gxd; //y1^2 * gxd
let e2 = tv2.ct_eq(&gx1);
// if e2 , x = x1, else x = x2
let mut x = Self::conditional_select(&x2n, &x1n, e2);
// xn / xd
x *= xd.invert().unwrap();
// if e2, y = y1, else y = y2
let mut y = Self::conditional_select(&y2, &y1, e2);
y.conditional_assign(&-y, self.sgn0() ^ y.sgn0());
(x, y)
}
}