logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#![no_std]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![doc = include_str!("../README.md")]
#![doc(
    html_logo_url = "https://raw.githubusercontent.com/RustCrypto/media/8f1a9894/logo.svg",
    html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/media/8f1a9894/logo.svg"
)]
#![forbid(unsafe_code, clippy::unwrap_used)]
#![warn(missing_docs, rust_2018_idioms, unused_qualifications)]

//! ## Usage
//!
//! This crate provides traits for describing elliptic curves, along with
//! types which are generic over elliptic curves which can be used as the
//! basis of curve-agnostic code.
//!
//! It's intended to be used with the following concrete elliptic curve
//! implementations from the [`RustCrypto/elliptic-curves`] project:
//!
//! - [`bp256`]: brainpoolP256r1 and brainpoolP256t1
//! - [`bp384`]: brainpoolP384r1 and brainpoolP384t1
//! - [`k256`]: secp256k1 a.k.a. K-256
//! - [`p256`]: NIST P-256 a.k.a secp256r1, prime256v1
//! - [`p384`]: NIST P-384 a.k.a. secp384r1
//!
//! The [`ecdsa`] crate provides a generic implementation of the
//! Elliptic Curve Digital Signature Algorithm which can be used with any of
//! the above crates, either via an external ECDSA implementation, or
//! using native curve arithmetic where applicable.
//!
//! ## Type conversions
//!
//! The following chart illustrates the various conversions possible between
//! the various types defined by this crate.
//!
//! ![Type Conversion Map](https://raw.githubusercontent.com/RustCrypto/media/master/img/elliptic-curve/type-transforms.svg)
//!
//! ## `serde` support
//!
//! When the `serde` feature of this crate is enabled, `Serialize` and
//! `Deserialize` impls are provided for the following types:
//!
//! - [`JwkEcKey`]
//! - [`PublicKey`]
//! - [`ScalarCore`]
//!
//! Please see type-specific documentation for more information.
//!
//! [`RustCrypto/elliptic-curves`]: https://github.com/RustCrypto/elliptic-curves
//! [`bp256`]: https://github.com/RustCrypto/elliptic-curves/tree/master/bp256
//! [`bp384`]: https://github.com/RustCrypto/elliptic-curves/tree/master/bp384
//! [`k256`]: https://github.com/RustCrypto/elliptic-curves/tree/master/k256
//! [`p256`]: https://github.com/RustCrypto/elliptic-curves/tree/master/p256
//! [`p384`]: https://github.com/RustCrypto/elliptic-curves/tree/master/p384
//! [`ecdsa`]: https://github.com/RustCrypto/signatures/tree/master/ecdsa

#[cfg(feature = "alloc")]
#[allow(unused_imports)]
#[macro_use]
extern crate alloc;

#[cfg(feature = "std")]
extern crate std;

#[cfg(feature = "rand_core")]
#[cfg_attr(docsrs, doc(cfg(feature = "rand_core")))]
pub use rand_core;

#[macro_use]
mod macros;

pub mod ops;

#[cfg(feature = "dev")]
#[cfg_attr(docsrs, doc(cfg(feature = "dev")))]
pub mod dev;

#[cfg(feature = "ecdh")]
#[cfg_attr(docsrs, doc(cfg(feature = "ecdh")))]
pub mod ecdh;

#[cfg(feature = "hash2curve")]
#[cfg_attr(docsrs, doc(cfg(feature = "hash2curve")))]
pub mod hash2curve;

#[cfg(feature = "sec1")]
#[cfg_attr(docsrs, doc(cfg(feature = "sec1")))]
pub mod sec1;

#[cfg(feature = "arithmetic")]
#[cfg_attr(docsrs, doc(cfg(feature = "arithmetic")))]
pub mod weierstrass;

mod error;
mod point;
mod scalar;
mod secret_key;

#[cfg(feature = "arithmetic")]
mod arithmetic;
#[cfg(feature = "arithmetic")]
mod public_key;

#[cfg(feature = "jwk")]
mod jwk;

pub use crate::{
    error::{Error, Result},
    point::{
        AffineXCoordinate, DecompactPoint, DecompressPoint, PointCompaction, PointCompression,
    },
    scalar::{core::ScalarCore, IsHigh},
    secret_key::SecretKey,
};
pub use crypto_bigint as bigint;
pub use generic_array::{self, typenum::consts};
pub use rand_core;
pub use subtle;
pub use zeroize;

#[cfg(feature = "arithmetic")]
pub use {
    crate::{
        arithmetic::{
            AffineArithmetic, PrimeCurveArithmetic, ProjectiveArithmetic, ScalarArithmetic,
        },
        public_key::PublicKey,
        scalar::{nonzero::NonZeroScalar, Scalar},
    },
    ff::{self, Field, PrimeField},
    group::{self, Group},
};

#[cfg(feature = "bits")]
pub use crate::scalar::ScalarBits;

#[cfg(feature = "jwk")]
pub use crate::jwk::{JwkEcKey, JwkParameters};

#[cfg(feature = "pkcs8")]
pub use pkcs8;

use core::fmt::Debug;
use generic_array::GenericArray;

/// Algorithm [`ObjectIdentifier`][`pkcs8::ObjectIdentifier`] for elliptic
/// curve public key cryptography (`id-ecPublicKey`).
///
/// <http://oid-info.com/get/1.2.840.10045.2.1>
#[cfg(feature = "pkcs8")]
#[cfg_attr(docsrs, doc(cfg(feature = "pkcs8")))]
pub const ALGORITHM_OID: pkcs8::ObjectIdentifier =
    pkcs8::ObjectIdentifier::new_unwrap("1.2.840.10045.2.1");

/// Elliptic curve.
///
/// This trait is intended to be impl'd by a ZST which represents a concrete
/// elliptic curve.
///
/// Other traits in this crate which are bounded by [`Curve`] are intended to
/// be impl'd by these ZSTs, facilitating types which are generic over elliptic
/// curves (e.g. [`SecretKey`]).
pub trait Curve: 'static + Copy + Clone + Debug + Default + Eq + Ord + Send + Sync {
    /// Integer type used to represent field elements of this elliptic curve.
    // TODO(tarcieri): replace this with an e.g. `const Curve::MODULUS: UInt`.
    // Requires rust-lang/rust#60551, i.e. `const_evaluatable_checked`
    type UInt: bigint::AddMod<Output = Self::UInt>
        + bigint::ArrayEncoding
        + bigint::Encoding
        + bigint::Integer
        + bigint::NegMod<Output = Self::UInt>
        + bigint::Random
        + bigint::RandomMod
        + bigint::SubMod<Output = Self::UInt>
        + zeroize::Zeroize;

    /// Order constant.
    ///
    /// Subdivided into either 32-bit or 64-bit "limbs" (depending on the
    /// target CPU's word size), specified from least to most significant.
    const ORDER: Self::UInt;
}

/// Marker trait for elliptic curves with prime order.
pub trait PrimeCurve: Curve {}

/// Size of field elements of this elliptic curve.
pub type FieldSize<C> = <<C as Curve>::UInt as bigint::ArrayEncoding>::ByteSize;

/// Byte representation of a base/scalar field element of a given curve.
pub type FieldBytes<C> = GenericArray<u8, FieldSize<C>>;

/// Affine point type for a given curve with a [`ProjectiveArithmetic`]
/// implementation.
#[cfg_attr(docsrs, doc(cfg(feature = "arithmetic")))]
#[cfg(feature = "arithmetic")]
pub type AffinePoint<C> = <C as AffineArithmetic>::AffinePoint;

/// Projective point type for a given curve with a [`ProjectiveArithmetic`]
/// implementation.
#[cfg(feature = "arithmetic")]
#[cfg_attr(docsrs, doc(cfg(feature = "arithmetic")))]
pub type ProjectivePoint<C> = <C as ProjectiveArithmetic>::ProjectivePoint;

/// Elliptic curve parameters used by VOPRF.
#[cfg(feature = "voprf")]
#[cfg_attr(docsrs, doc(cfg(feature = "voprf")))]
pub trait VoprfParameters: Curve {
    /// The `ID` parameter which identifies a particular elliptic curve
    /// as defined in [section 4 of `draft-irtf-cfrg-voprf-08`][voprf].
    ///
    /// [voprf]: https://www.ietf.org/archive/id/draft-irtf-cfrg-voprf-08.html#section-4
    const ID: u16;

    /// The `Hash` parameter which assigns a particular hash function to this
    /// ciphersuite as defined in [section 4 of `draft-irtf-cfrg-voprf-08`][voprf].
    ///
    /// [voprf]: https://www.ietf.org/archive/id/draft-irtf-cfrg-voprf-08.html#section-4
    type Hash: digest::Digest;
}