1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
//! Elliptic Curve Diffie-Hellman Support.
//!
//! This module contains a generic ECDH implementation which is usable with
//! any elliptic curve which implements the [`CurveArithmetic`] trait (presently
//! the `k256` and `p256` crates)
//!
//! # ECDH Ephemeral (ECDHE) Usage
//!
//! Ephemeral Diffie-Hellman provides a one-time key exchange between two peers
//! using a randomly generated set of keys for each exchange.
//!
//! In practice ECDHE is used as part of an [Authenticated Key Exchange (AKE)][AKE]
//! protocol (e.g. [SIGMA]), where an existing cryptographic trust relationship
//! can be used to determine the authenticity of the ephemeral keys, such as
//! a digital signature. Without such an additional step, ECDHE is insecure!
//! (see security warning below)
//!
//! See the documentation for the [`EphemeralSecret`] type for more information
//! on performing ECDH ephemeral key exchanges.
//!
//! # Static ECDH Usage
//!
//! Static ECDH key exchanges are supported via the low-level
//! [`diffie_hellman`] function.
//!
//! [AKE]: https://en.wikipedia.org/wiki/Authenticated_Key_Exchange
//! [SIGMA]: https://webee.technion.ac.il/~hugo/sigma-pdf.pdf
use crate::{
point::AffineCoordinates, AffinePoint, Curve, CurveArithmetic, FieldBytes, NonZeroScalar,
ProjectivePoint, PublicKey,
};
use core::borrow::Borrow;
use digest::{crypto_common::BlockSizeUser, Digest};
use group::Curve as _;
use hkdf::{hmac::SimpleHmac, Hkdf};
use rand_core::CryptoRngCore;
use zeroize::{Zeroize, ZeroizeOnDrop};
/// Low-level Elliptic Curve Diffie-Hellman (ECDH) function.
///
/// Whenever possible, we recommend using the high-level ECDH ephemeral API
/// provided by [`EphemeralSecret`].
///
/// However, if you are implementing a protocol which requires a static scalar
/// value as part of an ECDH exchange, this API can be used to compute a
/// [`SharedSecret`] from that value.
///
/// Note that this API operates on the low-level [`NonZeroScalar`] and
/// [`AffinePoint`] types. If you are attempting to use the higher-level
/// [`SecretKey`][`crate::SecretKey`] and [`PublicKey`] types, you will
/// need to use the following conversions:
///
/// ```ignore
/// let shared_secret = elliptic_curve::ecdh::diffie_hellman(
/// secret_key.to_nonzero_scalar(),
/// public_key.as_affine()
/// );
/// ```
pub fn diffie_hellman<C>(
secret_key: impl Borrow<NonZeroScalar<C>>,
public_key: impl Borrow<AffinePoint<C>>,
) -> SharedSecret<C>
where
C: CurveArithmetic,
{
let public_point = ProjectivePoint::<C>::from(*public_key.borrow());
let secret_point = (public_point * secret_key.borrow().as_ref()).to_affine();
SharedSecret::new(secret_point)
}
/// Ephemeral Diffie-Hellman Secret.
///
/// These are ephemeral "secret key" values which are deliberately designed
/// to avoid being persisted.
///
/// To perform an ephemeral Diffie-Hellman exchange, do the following:
///
/// - Have each participant generate an [`EphemeralSecret`] value
/// - Compute the [`PublicKey`] for that value
/// - Have each peer provide their [`PublicKey`] to their counterpart
/// - Use [`EphemeralSecret`] and the other participant's [`PublicKey`]
/// to compute a [`SharedSecret`] value.
///
/// # ⚠️ SECURITY WARNING ⚠️
///
/// Ephemeral Diffie-Hellman exchanges are unauthenticated and without a
/// further authentication step are trivially vulnerable to man-in-the-middle
/// attacks!
///
/// These exchanges should be performed in the context of a protocol which
/// takes further steps to authenticate the peers in a key exchange.
pub struct EphemeralSecret<C>
where
C: CurveArithmetic,
{
scalar: NonZeroScalar<C>,
}
impl<C> EphemeralSecret<C>
where
C: CurveArithmetic,
{
/// Generate a cryptographically random [`EphemeralSecret`].
pub fn random(rng: &mut impl CryptoRngCore) -> Self {
Self {
scalar: NonZeroScalar::random(rng),
}
}
/// Get the public key associated with this ephemeral secret.
///
/// The `compress` flag enables point compression.
pub fn public_key(&self) -> PublicKey<C> {
PublicKey::from_secret_scalar(&self.scalar)
}
/// Compute a Diffie-Hellman shared secret from an ephemeral secret and the
/// public key of the other participant in the exchange.
pub fn diffie_hellman(&self, public_key: &PublicKey<C>) -> SharedSecret<C> {
diffie_hellman(self.scalar, public_key.as_affine())
}
}
impl<C> From<&EphemeralSecret<C>> for PublicKey<C>
where
C: CurveArithmetic,
{
fn from(ephemeral_secret: &EphemeralSecret<C>) -> Self {
ephemeral_secret.public_key()
}
}
impl<C> Zeroize for EphemeralSecret<C>
where
C: CurveArithmetic,
{
fn zeroize(&mut self) {
self.scalar.zeroize()
}
}
impl<C> ZeroizeOnDrop for EphemeralSecret<C> where C: CurveArithmetic {}
impl<C> Drop for EphemeralSecret<C>
where
C: CurveArithmetic,
{
fn drop(&mut self) {
self.zeroize();
}
}
/// Shared secret value computed via ECDH key agreement.
pub struct SharedSecret<C: Curve> {
/// Computed secret value
secret_bytes: FieldBytes<C>,
}
impl<C: Curve> SharedSecret<C> {
/// Create a new [`SharedSecret`] from an [`AffinePoint`] for this curve.
#[inline]
fn new(point: AffinePoint<C>) -> Self
where
C: CurveArithmetic,
{
Self {
secret_bytes: point.x(),
}
}
/// Use [HKDF] (HMAC-based Extract-and-Expand Key Derivation Function) to
/// extract entropy from this shared secret.
///
/// This method can be used to transform the shared secret into uniformly
/// random values which are suitable as key material.
///
/// The `D` type parameter is a cryptographic digest function.
/// `sha2::Sha256` is a common choice for use with HKDF.
///
/// The `salt` parameter can be used to supply additional randomness.
/// Some examples include:
///
/// - randomly generated (but authenticated) string
/// - fixed application-specific value
/// - previous shared secret used for rekeying (as in TLS 1.3 and Noise)
///
/// After initializing HKDF, use [`Hkdf::expand`] to obtain output key
/// material.
///
/// [HKDF]: https://en.wikipedia.org/wiki/HKDF
pub fn extract<D>(&self, salt: Option<&[u8]>) -> Hkdf<D, SimpleHmac<D>>
where
D: BlockSizeUser + Clone + Digest,
{
Hkdf::new(salt, &self.secret_bytes)
}
/// This value contains the raw serialized x-coordinate of the elliptic curve
/// point computed from a Diffie-Hellman exchange, serialized as bytes.
///
/// When in doubt, use [`SharedSecret::extract`] instead.
///
/// # ⚠️ WARNING: NOT UNIFORMLY RANDOM! ⚠️
///
/// This value is not uniformly random and should not be used directly
/// as a cryptographic key for anything which requires that property
/// (e.g. symmetric ciphers).
///
/// Instead, the resulting value should be used as input to a Key Derivation
/// Function (KDF) or cryptographic hash function to produce a symmetric key.
/// The [`SharedSecret::extract`] function will do this for you.
pub fn raw_secret_bytes(&self) -> &FieldBytes<C> {
&self.secret_bytes
}
}
impl<C: Curve> From<FieldBytes<C>> for SharedSecret<C> {
/// NOTE: this impl is intended to be used by curve implementations to
/// instantiate a [`SharedSecret`] value from their respective
/// [`AffinePoint`] type.
///
/// Curve implementations should provide the field element representing
/// the affine x-coordinate as `secret_bytes`.
fn from(secret_bytes: FieldBytes<C>) -> Self {
Self { secret_bytes }
}
}
impl<C: Curve> ZeroizeOnDrop for SharedSecret<C> {}
impl<C: Curve> Drop for SharedSecret<C> {
fn drop(&mut self) {
self.secret_bytes.zeroize()
}
}