1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
//! Traits for arithmetic operations on elliptic curve field elements.
pub use core::ops::{Add, AddAssign, Mul, Neg, Shr, ShrAssign, Sub, SubAssign};
use crypto_bigint::Integer;
use group::Group;
use subtle::{Choice, ConditionallySelectable, CtOption};
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
/// Perform an inversion on a field element (i.e. base field element or scalar)
pub trait Invert {
/// Field element type
type Output;
/// Invert a field element.
fn invert(&self) -> Self::Output;
/// Invert a field element in variable time.
///
/// ⚠️ WARNING!
///
/// This method should not be used with secret values, as its variable-time
/// operation can potentially leak secrets through sidechannels.
fn invert_vartime(&self) -> Self::Output {
// Fall back on constant-time implementation by default.
self.invert()
}
}
/// Perform a batched inversion on a sequence of field elements (i.e. base field elements or scalars)
/// at an amortized cost that should be practically as efficient as a single inversion.
pub trait BatchInvert<FieldElements: ?Sized>: Invert + Sized {
/// The output of batch inversion. A container of field elements.
type Output: AsRef<[Self]>;
/// Invert a batch of field elements.
fn batch_invert(
field_elements: &FieldElements,
) -> CtOption<<Self as BatchInvert<FieldElements>>::Output>;
}
impl<const N: usize, T> BatchInvert<[T; N]> for T
where
T: Invert<Output = CtOption<Self>>
+ Mul<Self, Output = Self>
+ Copy
+ Default
+ ConditionallySelectable,
{
type Output = [Self; N];
fn batch_invert(field_elements: &[Self; N]) -> CtOption<[Self; N]> {
let mut field_elements_multiples = [Self::default(); N];
let mut field_elements_multiples_inverses = [Self::default(); N];
let mut field_elements_inverses = [Self::default(); N];
let inversion_succeeded = invert_batch_internal(
field_elements,
&mut field_elements_multiples,
&mut field_elements_multiples_inverses,
&mut field_elements_inverses,
);
CtOption::new(field_elements_inverses, inversion_succeeded)
}
}
#[cfg(feature = "alloc")]
impl<T> BatchInvert<[T]> for T
where
T: Invert<Output = CtOption<Self>>
+ Mul<Self, Output = Self>
+ Copy
+ Default
+ ConditionallySelectable,
{
type Output = Vec<Self>;
fn batch_invert(field_elements: &[Self]) -> CtOption<Vec<Self>> {
let mut field_elements_multiples: Vec<Self> = vec![Self::default(); field_elements.len()];
let mut field_elements_multiples_inverses: Vec<Self> =
vec![Self::default(); field_elements.len()];
let mut field_elements_inverses: Vec<Self> = vec![Self::default(); field_elements.len()];
let inversion_succeeded = invert_batch_internal(
field_elements,
field_elements_multiples.as_mut(),
field_elements_multiples_inverses.as_mut(),
field_elements_inverses.as_mut(),
);
CtOption::new(
field_elements_inverses.into_iter().collect(),
inversion_succeeded,
)
}
}
/// Implements "Montgomery's trick", a trick for computing many modular inverses at once.
///
/// "Montgomery's trick" works by reducing the problem of computing `n` inverses
/// to computing a single inversion, plus some storage and `O(n)` extra multiplications.
///
/// See: https://iacr.org/archive/pkc2004/29470042/29470042.pdf section 2.2.
fn invert_batch_internal<
T: Invert<Output = CtOption<T>> + Mul<T, Output = T> + Default + ConditionallySelectable,
>(
field_elements: &[T],
field_elements_multiples: &mut [T],
field_elements_multiples_inverses: &mut [T],
field_elements_inverses: &mut [T],
) -> Choice {
let batch_size = field_elements.len();
if batch_size == 0
|| batch_size != field_elements_multiples.len()
|| batch_size != field_elements_multiples_inverses.len()
{
return Choice::from(0);
}
field_elements_multiples[0] = field_elements[0];
for i in 1..batch_size {
// $ a_n = a_{n-1}*x_n $
field_elements_multiples[i] = field_elements_multiples[i - 1] * field_elements[i];
}
field_elements_multiples[batch_size - 1]
.invert()
.map(|multiple_of_inverses_of_all_field_elements| {
field_elements_multiples_inverses[batch_size - 1] =
multiple_of_inverses_of_all_field_elements;
for i in (1..batch_size).rev() {
// $ a_{n-1} = {a_n}^{-1}*x_n $
field_elements_multiples_inverses[i - 1] =
field_elements_multiples_inverses[i] * field_elements[i];
}
field_elements_inverses[0] = field_elements_multiples_inverses[0];
for i in 1..batch_size {
// $ {x_n}^{-1} = a_{n}^{-1}*a_{n-1} $
field_elements_inverses[i] =
field_elements_multiples_inverses[i] * field_elements_multiples[i - 1];
}
})
.is_some()
}
/// Linear combination.
///
/// This trait enables crates to provide an optimized implementation of
/// linear combinations (e.g. Shamir's Trick), or otherwise provides a default
/// non-optimized implementation.
// TODO(tarcieri): replace this with a trait from the `group` crate? (see zkcrypto/group#25)
pub trait LinearCombination: Group {
/// Calculates `x * k + y * l`.
fn lincomb(x: &Self, k: &Self::Scalar, y: &Self, l: &Self::Scalar) -> Self {
(*x * k) + (*y * l)
}
}
/// Linear combination (extended version).
///
/// This trait enables providing an optimized implementation of
/// linear combinations (e.g. Shamir's Trick).
// TODO(tarcieri): replace the current `LinearCombination` with this in the next release
pub trait LinearCombinationExt<PointsAndScalars>: group::Curve
where
PointsAndScalars: AsRef<[(Self, Self::Scalar)]> + ?Sized,
{
/// Calculates `x1 * k1 + ... + xn * kn`.
fn lincomb_ext(points_and_scalars: &PointsAndScalars) -> Self {
points_and_scalars
.as_ref()
.iter()
.copied()
.map(|(point, scalar)| point * scalar)
.sum()
}
}
/// Blanket impl of the legacy [`LinearCombination`] trait for types which impl the new
/// [`LinearCombinationExt`] trait for 2-element arrays.
impl<P: LinearCombinationExt<[(P, Self::Scalar); 2]>> LinearCombination for P {
fn lincomb(x: &Self, k: &Self::Scalar, y: &Self, l: &Self::Scalar) -> Self {
Self::lincomb_ext(&[(*x, *k), (*y, *l)])
}
}
/// Multiplication by the generator.
///
/// May use optimizations (e.g. precomputed tables) when available.
// TODO(tarcieri): replace this with `Group::mul_by_generator``? (see zkcrypto/group#44)
pub trait MulByGenerator: Group {
/// Multiply by the generator of the prime-order subgroup.
#[must_use]
fn mul_by_generator(scalar: &Self::Scalar) -> Self {
Self::generator() * scalar
}
}
/// Modular reduction.
pub trait Reduce<Uint: Integer>: Sized {
/// Bytes used as input to [`Reduce::reduce_bytes`].
type Bytes: AsRef<[u8]>;
/// Perform a modular reduction, returning a field element.
fn reduce(n: Uint) -> Self;
/// Interpret the given bytes as an integer and perform a modular reduction.
fn reduce_bytes(bytes: &Self::Bytes) -> Self;
}
/// Modular reduction to a non-zero output.
///
/// This trait is primarily intended for use by curve implementations such
/// as the `k256` and `p256` crates.
///
/// End users should use the [`Reduce`] impl on
/// [`NonZeroScalar`][`crate::NonZeroScalar`] instead.
pub trait ReduceNonZero<Uint: Integer>: Reduce<Uint> + Sized {
/// Perform a modular reduction, returning a field element.
fn reduce_nonzero(n: Uint) -> Self;
/// Interpret the given bytes as an integer and perform a modular reduction
/// to a non-zero output.
fn reduce_nonzero_bytes(bytes: &Self::Bytes) -> Self;
}