1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
use core::cell::RefCell;

use embassy_embedded_hal::flash::partition::BlockingPartition;
use embassy_sync::blocking_mutex::raw::NoopRawMutex;
use embassy_sync::blocking_mutex::Mutex;
use embedded_storage::nor_flash::{NorFlash, NorFlashError, NorFlashErrorKind};

use crate::{State, BOOT_MAGIC, DFU_DETACH_MAGIC, STATE_ERASE_VALUE, SWAP_MAGIC};

/// Errors returned by bootloader
#[derive(PartialEq, Eq, Debug)]
pub enum BootError {
    /// Error from flash.
    Flash(NorFlashErrorKind),
    /// Invalid bootloader magic
    BadMagic,
}

#[cfg(feature = "defmt")]
impl defmt::Format for BootError {
    fn format(&self, fmt: defmt::Formatter) {
        match self {
            BootError::Flash(_) => defmt::write!(fmt, "BootError::Flash(_)"),
            BootError::BadMagic => defmt::write!(fmt, "BootError::BadMagic"),
        }
    }
}

impl<E> From<E> for BootError
where
    E: NorFlashError,
{
    fn from(error: E) -> Self {
        BootError::Flash(error.kind())
    }
}

/// Bootloader flash configuration holding the three flashes used by the bootloader
///
/// If only a single flash is actually used, then that flash should be partitioned into three partitions before use.
/// The easiest way to do this is to use [`BootLoaderConfig::from_linkerfile_blocking`] which will partition
/// the provided flash according to symbols defined in the linkerfile.
pub struct BootLoaderConfig<ACTIVE, DFU, STATE> {
    /// Flash type used for the active partition - the partition which will be booted from.
    pub active: ACTIVE,
    /// Flash type used for the dfu partition - the partition which will be swapped in when requested.
    pub dfu: DFU,
    /// Flash type used for the state partition.
    pub state: STATE,
}

impl<'a, FLASH: NorFlash>
    BootLoaderConfig<
        BlockingPartition<'a, NoopRawMutex, FLASH>,
        BlockingPartition<'a, NoopRawMutex, FLASH>,
        BlockingPartition<'a, NoopRawMutex, FLASH>,
    >
{
    /// Create a bootloader config from the flash and address symbols defined in the linkerfile
    // #[cfg(target_os = "none")]
    pub fn from_linkerfile_blocking(flash: &'a Mutex<NoopRawMutex, RefCell<FLASH>>) -> Self {
        extern "C" {
            static __bootloader_state_start: u32;
            static __bootloader_state_end: u32;
            static __bootloader_active_start: u32;
            static __bootloader_active_end: u32;
            static __bootloader_dfu_start: u32;
            static __bootloader_dfu_end: u32;
        }

        let active = unsafe {
            let start = &__bootloader_active_start as *const u32 as u32;
            let end = &__bootloader_active_end as *const u32 as u32;
            trace!("ACTIVE: 0x{:x} - 0x{:x}", start, end);

            BlockingPartition::new(flash, start, end - start)
        };
        let dfu = unsafe {
            let start = &__bootloader_dfu_start as *const u32 as u32;
            let end = &__bootloader_dfu_end as *const u32 as u32;
            trace!("DFU: 0x{:x} - 0x{:x}", start, end);

            BlockingPartition::new(flash, start, end - start)
        };
        let state = unsafe {
            let start = &__bootloader_state_start as *const u32 as u32;
            let end = &__bootloader_state_end as *const u32 as u32;
            trace!("STATE: 0x{:x} - 0x{:x}", start, end);

            BlockingPartition::new(flash, start, end - start)
        };

        Self { active, dfu, state }
    }
}

/// BootLoader works with any flash implementing embedded_storage.
pub struct BootLoader<ACTIVE: NorFlash, DFU: NorFlash, STATE: NorFlash> {
    active: ACTIVE,
    dfu: DFU,
    /// The state partition has the following format:
    /// All ranges are in multiples of WRITE_SIZE bytes.
    /// | Range    | Description                                                                      |
    /// | 0..1     | Magic indicating bootloader state. BOOT_MAGIC means boot, SWAP_MAGIC means swap. |
    /// | 1..2     | Progress validity. ERASE_VALUE means valid, !ERASE_VALUE means invalid.          |
    /// | 2..2 + N | Progress index used while swapping or reverting      
    state: STATE,
}

impl<ACTIVE: NorFlash, DFU: NorFlash, STATE: NorFlash> BootLoader<ACTIVE, DFU, STATE> {
    /// Get the page size which is the "unit of operation" within the bootloader.
    const PAGE_SIZE: u32 = if ACTIVE::ERASE_SIZE > DFU::ERASE_SIZE {
        ACTIVE::ERASE_SIZE as u32
    } else {
        DFU::ERASE_SIZE as u32
    };

    /// Create a new instance of a bootloader with the flash partitions.
    ///
    /// - All partitions must be aligned with the PAGE_SIZE const generic parameter.
    /// - The dfu partition must be at least PAGE_SIZE bigger than the active partition.
    pub fn new(config: BootLoaderConfig<ACTIVE, DFU, STATE>) -> Self {
        Self {
            active: config.active,
            dfu: config.dfu,
            state: config.state,
        }
    }

    /// Perform necessary boot preparations like swapping images.
    ///
    /// The DFU partition is assumed to be 1 page bigger than the active partition for the swap
    /// algorithm to work correctly.
    ///
    /// The provided aligned_buf argument must satisfy any alignment requirements
    /// given by the partition flashes. All flash operations will use this buffer.
    ///
    /// ## SWAPPING
    ///
    /// Assume a flash size of 3 pages for the active partition, and 4 pages for the DFU partition.
    /// The swap index contains the copy progress, as to allow continuation of the copy process on
    /// power failure. The index counter is represented within 1 or more pages (depending on total
    /// flash size), where a page X is considered swapped if index at location (`X + WRITE_SIZE`)
    /// contains a zero value. This ensures that index updates can be performed atomically and
    /// avoid a situation where the wrong index value is set (page write size is "atomic").
    ///
    ///
    /// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
    /// |-----------|------------|--------|--------|--------|--------|
    /// |    Active |          0 |      1 |      2 |      3 |      - |
    /// |       DFU |          0 |      3 |      2 |      1 |      X |
    ///
    /// The algorithm starts by copying 'backwards', and after the first step, the layout is
    /// as follows:
    ///
    /// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
    /// |-----------|------------|--------|--------|--------|--------|
    /// |    Active |          1 |      1 |      2 |      1 |      - |
    /// |       DFU |          1 |      3 |      2 |      1 |      3 |
    ///
    /// The next iteration performs the same steps
    ///
    /// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
    /// |-----------|------------|--------|--------|--------|--------|
    /// |    Active |          2 |      1 |      2 |      1 |      - |
    /// |       DFU |          2 |      3 |      2 |      2 |      3 |
    ///
    /// And again until we're done
    ///
    /// | Partition | Swap Index | Page 0 | Page 1 | Page 3 | Page 4 |
    /// |-----------|------------|--------|--------|--------|--------|
    /// |    Active |          3 |      3 |      2 |      1 |      - |
    /// |       DFU |          3 |      3 |      1 |      2 |      3 |
    ///
    /// ## REVERTING
    ///
    /// The reverting algorithm uses the swap index to discover that images were swapped, but that
    /// the application failed to mark the boot successful. In this case, the revert algorithm will
    /// run.
    ///
    /// The revert index is located separately from the swap index, to ensure that revert can continue
    /// on power failure.
    ///
    /// The revert algorithm works forwards, by starting copying into the 'unused' DFU page at the start.
    ///
    /// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 |
    /// |-----------|--------------|--------|--------|--------|--------|
    /// |    Active |            3 |      1 |      2 |      1 |      - |
    /// |       DFU |            3 |      3 |      1 |      2 |      3 |
    ///
    ///
    /// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 |
    /// |-----------|--------------|--------|--------|--------|--------|
    /// |    Active |            3 |      1 |      2 |      1 |      - |
    /// |       DFU |            3 |      3 |      2 |      2 |      3 |
    ///
    /// | Partition | Revert Index | Page 0 | Page 1 | Page 3 | Page 4 |
    /// |-----------|--------------|--------|--------|--------|--------|
    /// |    Active |            3 |      1 |      2 |      3 |      - |
    /// |       DFU |            3 |      3 |      2 |      1 |      3 |
    ///
    pub fn prepare_boot(&mut self, aligned_buf: &mut [u8]) -> Result<State, BootError> {
        // Ensure we have enough progress pages to store copy progress
        assert_eq!(0, Self::PAGE_SIZE % aligned_buf.len() as u32);
        assert_eq!(0, Self::PAGE_SIZE % ACTIVE::WRITE_SIZE as u32);
        assert_eq!(0, Self::PAGE_SIZE % ACTIVE::ERASE_SIZE as u32);
        assert_eq!(0, Self::PAGE_SIZE % DFU::WRITE_SIZE as u32);
        assert_eq!(0, Self::PAGE_SIZE % DFU::ERASE_SIZE as u32);
        assert!(aligned_buf.len() >= STATE::WRITE_SIZE);
        assert_eq!(0, aligned_buf.len() % ACTIVE::WRITE_SIZE);
        assert_eq!(0, aligned_buf.len() % DFU::WRITE_SIZE);

        // Ensure our partitions are able to handle boot operations
        assert_partitions(&self.active, &self.dfu, &self.state, Self::PAGE_SIZE);

        // Copy contents from partition N to active
        let state = self.read_state(aligned_buf)?;
        if state == State::Swap {
            //
            // Check if we already swapped. If we're in the swap state, this means we should revert
            // since the app has failed to mark boot as successful
            //
            if !self.is_swapped(aligned_buf)? {
                trace!("Swapping");
                self.swap(aligned_buf)?;
                trace!("Swapping done");
            } else {
                trace!("Reverting");
                self.revert(aligned_buf)?;

                let state_word = &mut aligned_buf[..STATE::WRITE_SIZE];

                // Invalidate progress
                state_word.fill(!STATE_ERASE_VALUE);
                self.state.write(STATE::WRITE_SIZE as u32, state_word)?;

                // Clear magic and progress
                self.state.erase(0, self.state.capacity() as u32)?;

                // Set magic
                state_word.fill(BOOT_MAGIC);
                self.state.write(0, state_word)?;
            }
        }
        Ok(state)
    }

    fn is_swapped(&mut self, aligned_buf: &mut [u8]) -> Result<bool, BootError> {
        let page_count = self.active.capacity() / Self::PAGE_SIZE as usize;
        let progress = self.current_progress(aligned_buf)?;

        Ok(progress >= page_count * 2)
    }

    fn current_progress(&mut self, aligned_buf: &mut [u8]) -> Result<usize, BootError> {
        let write_size = STATE::WRITE_SIZE as u32;
        let max_index = ((self.state.capacity() - STATE::WRITE_SIZE) / STATE::WRITE_SIZE) - 2;
        let state_word = &mut aligned_buf[..write_size as usize];

        self.state.read(write_size, state_word)?;
        if state_word.iter().any(|&b| b != STATE_ERASE_VALUE) {
            // Progress is invalid
            return Ok(max_index);
        }

        for index in 0..max_index {
            self.state.read((2 + index) as u32 * write_size, state_word)?;

            if state_word.iter().any(|&b| b == STATE_ERASE_VALUE) {
                return Ok(index);
            }
        }
        Ok(max_index)
    }

    fn update_progress(&mut self, progress_index: usize, aligned_buf: &mut [u8]) -> Result<(), BootError> {
        let state_word = &mut aligned_buf[..STATE::WRITE_SIZE];
        state_word.fill(!STATE_ERASE_VALUE);
        self.state
            .write((2 + progress_index) as u32 * STATE::WRITE_SIZE as u32, state_word)?;
        Ok(())
    }

    fn copy_page_once_to_active(
        &mut self,
        progress_index: usize,
        from_offset: u32,
        to_offset: u32,
        aligned_buf: &mut [u8],
    ) -> Result<(), BootError> {
        if self.current_progress(aligned_buf)? <= progress_index {
            let page_size = Self::PAGE_SIZE as u32;

            self.active.erase(to_offset, to_offset + page_size)?;

            for offset_in_page in (0..page_size).step_by(aligned_buf.len()) {
                self.dfu.read(from_offset + offset_in_page as u32, aligned_buf)?;
                self.active.write(to_offset + offset_in_page as u32, aligned_buf)?;
            }

            self.update_progress(progress_index, aligned_buf)?;
        }
        Ok(())
    }

    fn copy_page_once_to_dfu(
        &mut self,
        progress_index: usize,
        from_offset: u32,
        to_offset: u32,
        aligned_buf: &mut [u8],
    ) -> Result<(), BootError> {
        if self.current_progress(aligned_buf)? <= progress_index {
            let page_size = Self::PAGE_SIZE as u32;

            self.dfu.erase(to_offset as u32, to_offset + page_size)?;

            for offset_in_page in (0..page_size).step_by(aligned_buf.len()) {
                self.active.read(from_offset + offset_in_page as u32, aligned_buf)?;
                self.dfu.write(to_offset + offset_in_page as u32, aligned_buf)?;
            }

            self.update_progress(progress_index, aligned_buf)?;
        }
        Ok(())
    }

    fn swap(&mut self, aligned_buf: &mut [u8]) -> Result<(), BootError> {
        let page_count = self.active.capacity() as u32 / Self::PAGE_SIZE;
        for page_num in 0..page_count {
            let progress_index = (page_num * 2) as usize;

            // Copy active page to the 'next' DFU page.
            let active_from_offset = (page_count - 1 - page_num) * Self::PAGE_SIZE;
            let dfu_to_offset = (page_count - page_num) * Self::PAGE_SIZE;
            //trace!("Copy active {} to dfu {}", active_from_offset, dfu_to_offset);
            self.copy_page_once_to_dfu(progress_index, active_from_offset, dfu_to_offset, aligned_buf)?;

            // Copy DFU page to the active page
            let active_to_offset = (page_count - 1 - page_num) * Self::PAGE_SIZE;
            let dfu_from_offset = (page_count - 1 - page_num) * Self::PAGE_SIZE;
            //trace!("Copy dfy {} to active {}", dfu_from_offset, active_to_offset);
            self.copy_page_once_to_active(progress_index + 1, dfu_from_offset, active_to_offset, aligned_buf)?;
        }

        Ok(())
    }

    fn revert(&mut self, aligned_buf: &mut [u8]) -> Result<(), BootError> {
        let page_count = self.active.capacity() as u32 / Self::PAGE_SIZE;
        for page_num in 0..page_count {
            let progress_index = (page_count * 2 + page_num * 2) as usize;

            // Copy the bad active page to the DFU page
            let active_from_offset = page_num * Self::PAGE_SIZE;
            let dfu_to_offset = page_num * Self::PAGE_SIZE;
            self.copy_page_once_to_dfu(progress_index, active_from_offset, dfu_to_offset, aligned_buf)?;

            // Copy the DFU page back to the active page
            let active_to_offset = page_num * Self::PAGE_SIZE;
            let dfu_from_offset = (page_num + 1) * Self::PAGE_SIZE;
            self.copy_page_once_to_active(progress_index + 1, dfu_from_offset, active_to_offset, aligned_buf)?;
        }

        Ok(())
    }

    fn read_state(&mut self, aligned_buf: &mut [u8]) -> Result<State, BootError> {
        let state_word = &mut aligned_buf[..STATE::WRITE_SIZE];
        self.state.read(0, state_word)?;

        if !state_word.iter().any(|&b| b != SWAP_MAGIC) {
            Ok(State::Swap)
        } else if !state_word.iter().any(|&b| b != DFU_DETACH_MAGIC) {
            Ok(State::DfuDetach)
        } else {
            Ok(State::Boot)
        }
    }
}

fn assert_partitions<ACTIVE: NorFlash, DFU: NorFlash, STATE: NorFlash>(
    active: &ACTIVE,
    dfu: &DFU,
    state: &STATE,
    page_size: u32,
) {
    assert_eq!(active.capacity() as u32 % page_size, 0);
    assert_eq!(dfu.capacity() as u32 % page_size, 0);
    // DFU partition has to be bigger than ACTIVE partition to handle swap algorithm
    assert!(dfu.capacity() as u32 - active.capacity() as u32 >= page_size);
    assert!(2 + 2 * (active.capacity() as u32 / page_size) <= state.capacity() as u32 / STATE::WRITE_SIZE as u32);
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::mem_flash::MemFlash;

    #[test]
    #[should_panic]
    fn test_range_asserts() {
        const ACTIVE_SIZE: usize = 4194304 - 4096;
        const DFU_SIZE: usize = 4194304;
        const STATE_SIZE: usize = 4096;
        static ACTIVE: MemFlash<ACTIVE_SIZE, 4, 4> = MemFlash::new(0xFF);
        static DFU: MemFlash<DFU_SIZE, 4, 4> = MemFlash::new(0xFF);
        static STATE: MemFlash<STATE_SIZE, 4, 4> = MemFlash::new(0xFF);
        assert_partitions(&ACTIVE, &DFU, &STATE, 4096);
    }
}