1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
use embedded_hal_02::blocking::delay::DelayUs;
#[allow(unused)]
use pac::adc::vals::{Adcaldif, Boost, Difsel, Exten, Pcsel};
use pac::adccommon::vals::Presc;

use super::{Adc, AdcPin, Instance, InternalChannel, Resolution, SampleTime};
use crate::time::Hertz;
use crate::{pac, Peripheral};

/// Default VREF voltage used for sample conversion to millivolts.
pub const VREF_DEFAULT_MV: u32 = 3300;
/// VREF voltage used for factory calibration of VREFINTCAL register.
pub const VREF_CALIB_MV: u32 = 3300;

/// Max single ADC operation clock frequency
#[cfg(stm32g4)]
const MAX_ADC_CLK_FREQ: Hertz = Hertz::mhz(60);
#[cfg(stm32h7)]
const MAX_ADC_CLK_FREQ: Hertz = Hertz::mhz(50);

#[cfg(stm32g4)]
const VREF_CHANNEL: u8 = 18;
#[cfg(stm32g4)]
const TEMP_CHANNEL: u8 = 16;

#[cfg(stm32h7)]
const VREF_CHANNEL: u8 = 19;
#[cfg(stm32h7)]
const TEMP_CHANNEL: u8 = 18;

// TODO this should be 14 for H7a/b/35
const VBAT_CHANNEL: u8 = 17;

// NOTE: Vrefint/Temperature/Vbat are not available on all ADCs, this currently cannot be modeled with stm32-data, so these are available from the software on all ADCs
/// Internal voltage reference channel.
pub struct VrefInt;
impl<T: Instance> InternalChannel<T> for VrefInt {}
impl<T: Instance> super::sealed::InternalChannel<T> for VrefInt {
    fn channel(&self) -> u8 {
        VREF_CHANNEL
    }
}

/// Internal temperature channel.
pub struct Temperature;
impl<T: Instance> InternalChannel<T> for Temperature {}
impl<T: Instance> super::sealed::InternalChannel<T> for Temperature {
    fn channel(&self) -> u8 {
        TEMP_CHANNEL
    }
}

/// Internal battery voltage channel.
pub struct Vbat;
impl<T: Instance> InternalChannel<T> for Vbat {}
impl<T: Instance> super::sealed::InternalChannel<T> for Vbat {
    fn channel(&self) -> u8 {
        VBAT_CHANNEL
    }
}

// NOTE (unused): The prescaler enum closely copies the hardware capabilities,
// but high prescaling doesn't make a lot of sense in the current implementation and is ommited.
#[allow(unused)]
enum Prescaler {
    NotDivided,
    DividedBy2,
    DividedBy4,
    DividedBy6,
    DividedBy8,
    DividedBy10,
    DividedBy12,
    DividedBy16,
    DividedBy32,
    DividedBy64,
    DividedBy128,
    DividedBy256,
}

impl Prescaler {
    fn from_ker_ck(frequency: Hertz) -> Self {
        let raw_prescaler = frequency.0 / MAX_ADC_CLK_FREQ.0;
        match raw_prescaler {
            0 => Self::NotDivided,
            1 => Self::DividedBy2,
            2..=3 => Self::DividedBy4,
            4..=5 => Self::DividedBy6,
            6..=7 => Self::DividedBy8,
            8..=9 => Self::DividedBy10,
            10..=11 => Self::DividedBy12,
            _ => unimplemented!(),
        }
    }

    fn divisor(&self) -> u32 {
        match self {
            Prescaler::NotDivided => 1,
            Prescaler::DividedBy2 => 2,
            Prescaler::DividedBy4 => 4,
            Prescaler::DividedBy6 => 6,
            Prescaler::DividedBy8 => 8,
            Prescaler::DividedBy10 => 10,
            Prescaler::DividedBy12 => 12,
            Prescaler::DividedBy16 => 16,
            Prescaler::DividedBy32 => 32,
            Prescaler::DividedBy64 => 64,
            Prescaler::DividedBy128 => 128,
            Prescaler::DividedBy256 => 256,
        }
    }

    fn presc(&self) -> Presc {
        match self {
            Prescaler::NotDivided => Presc::DIV1,
            Prescaler::DividedBy2 => Presc::DIV2,
            Prescaler::DividedBy4 => Presc::DIV4,
            Prescaler::DividedBy6 => Presc::DIV6,
            Prescaler::DividedBy8 => Presc::DIV8,
            Prescaler::DividedBy10 => Presc::DIV10,
            Prescaler::DividedBy12 => Presc::DIV12,
            Prescaler::DividedBy16 => Presc::DIV16,
            Prescaler::DividedBy32 => Presc::DIV32,
            Prescaler::DividedBy64 => Presc::DIV64,
            Prescaler::DividedBy128 => Presc::DIV128,
            Prescaler::DividedBy256 => Presc::DIV256,
        }
    }
}

impl<'d, T: Instance> Adc<'d, T> {
    /// Create a new ADC driver.
    pub fn new(adc: impl Peripheral<P = T> + 'd, delay: &mut impl DelayUs<u16>) -> Self {
        embassy_hal_internal::into_ref!(adc);
        T::enable_and_reset();

        let prescaler = Prescaler::from_ker_ck(T::frequency());

        T::common_regs().ccr().modify(|w| w.set_presc(prescaler.presc()));

        let frequency = Hertz(T::frequency().0 / prescaler.divisor());
        info!("ADC frequency set to {} Hz", frequency.0);

        if frequency > MAX_ADC_CLK_FREQ {
            panic!("Maximal allowed frequency for the ADC is {} MHz and it varies with different packages, refer to ST docs for more information.", MAX_ADC_CLK_FREQ.0 /  1_000_000 );
        }

        #[cfg(stm32h7)]
        {
            let boost = if frequency < Hertz::khz(6_250) {
                Boost::LT6_25
            } else if frequency < Hertz::khz(12_500) {
                Boost::LT12_5
            } else if frequency < Hertz::mhz(25) {
                Boost::LT25
            } else {
                Boost::LT50
            };
            T::regs().cr().modify(|w| w.set_boost(boost));
        }
        let mut s = Self {
            adc,
            sample_time: Default::default(),
        };
        s.power_up(delay);
        s.configure_differential_inputs();

        s.calibrate();
        delay.delay_us(1);

        s.enable();
        s.configure();

        s
    }

    fn power_up(&mut self, delay: &mut impl DelayUs<u16>) {
        T::regs().cr().modify(|reg| {
            reg.set_deeppwd(false);
            reg.set_advregen(true);
        });

        delay.delay_us(10);
    }

    fn configure_differential_inputs(&mut self) {
        T::regs().difsel().modify(|w| {
            for n in 0..20 {
                w.set_difsel(n, Difsel::SINGLEENDED);
            }
        });
    }

    fn calibrate(&mut self) {
        T::regs().cr().modify(|w| {
            w.set_adcaldif(Adcaldif::SINGLEENDED);
            w.set_adcallin(true);
        });

        T::regs().cr().modify(|w| w.set_adcal(true));

        while T::regs().cr().read().adcal() {}
    }

    fn enable(&mut self) {
        T::regs().isr().write(|w| w.set_adrdy(true));
        T::regs().cr().modify(|w| w.set_aden(true));
        while !T::regs().isr().read().adrdy() {}
        T::regs().isr().write(|w| w.set_adrdy(true));
    }

    fn configure(&mut self) {
        // single conversion mode, software trigger
        T::regs().cfgr().modify(|w| {
            w.set_cont(false);
            w.set_exten(Exten::DISABLED);
        });
    }

    /// Enable reading the voltage reference internal channel.
    pub fn enable_vrefint(&self) -> VrefInt {
        T::common_regs().ccr().modify(|reg| {
            reg.set_vrefen(true);
        });

        VrefInt {}
    }

    /// Enable reading the temperature internal channel.
    pub fn enable_temperature(&self) -> Temperature {
        T::common_regs().ccr().modify(|reg| {
            reg.set_vsenseen(true);
        });

        Temperature {}
    }

    /// Enable reading the vbat internal channel.
    pub fn enable_vbat(&self) -> Vbat {
        T::common_regs().ccr().modify(|reg| {
            reg.set_vbaten(true);
        });

        Vbat {}
    }

    /// Set the ADC sample time.
    pub fn set_sample_time(&mut self, sample_time: SampleTime) {
        self.sample_time = sample_time;
    }

    /// Set the ADC resolution.
    pub fn set_resolution(&mut self, resolution: Resolution) {
        T::regs().cfgr().modify(|reg| reg.set_res(resolution.into()));
    }

    /// Perform a single conversion.
    fn convert(&mut self) -> u16 {
        T::regs().isr().modify(|reg| {
            reg.set_eos(true);
            reg.set_eoc(true);
        });

        // Start conversion
        T::regs().cr().modify(|reg| {
            reg.set_adstart(true);
        });

        while !T::regs().isr().read().eos() {
            // spin
        }

        T::regs().dr().read().0 as u16
    }

    /// Read an ADC pin.
    pub fn read<P>(&mut self, pin: &mut P) -> u16
    where
        P: AdcPin<T>,
        P: crate::gpio::sealed::Pin,
    {
        pin.set_as_analog();

        self.read_channel(pin.channel())
    }

    /// Read an ADC internal channel.
    pub fn read_internal(&mut self, channel: &mut impl InternalChannel<T>) -> u16 {
        self.read_channel(channel.channel())
    }

    fn read_channel(&mut self, channel: u8) -> u16 {
        // Configure channel
        Self::set_channel_sample_time(channel, self.sample_time);

        #[cfg(stm32h7)]
        {
            T::regs().cfgr2().modify(|w| w.set_lshift(0));
            T::regs()
                .pcsel()
                .write(|w| w.set_pcsel(channel as _, Pcsel::PRESELECTED));
        }

        T::regs().sqr1().write(|reg| {
            reg.set_sq(0, channel);
            reg.set_l(0);
        });

        self.convert()
    }

    fn set_channel_sample_time(ch: u8, sample_time: SampleTime) {
        let sample_time = sample_time.into();
        if ch <= 9 {
            T::regs().smpr(0).modify(|reg| reg.set_smp(ch as _, sample_time));
        } else {
            T::regs().smpr(1).modify(|reg| reg.set_smp((ch - 10) as _, sample_time));
        }
    }
}