1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
//! Ethernet (ETH)
#![macro_use]

#[cfg_attr(any(eth_v1a, eth_v1b, eth_v1c), path = "v1/mod.rs")]
#[cfg_attr(eth_v2, path = "v2/mod.rs")]
mod _version;
pub mod generic_smi;

use core::mem::MaybeUninit;
use core::task::Context;

use embassy_net_driver::{Capabilities, HardwareAddress, LinkState};
use embassy_sync::waitqueue::AtomicWaker;

pub use self::_version::{InterruptHandler, *};

#[allow(unused)]
const MTU: usize = 1514;
const TX_BUFFER_SIZE: usize = 1514;
const RX_BUFFER_SIZE: usize = 1536;

#[repr(C, align(8))]
#[derive(Copy, Clone)]
pub(crate) struct Packet<const N: usize>([u8; N]);

/// Ethernet packet queue.
///
/// This struct owns the memory used for reading and writing packets.
///
/// `TX` is the number of packets in the transmit queue, `RX` in the receive
/// queue. A bigger queue allows the hardware to receive more packets while the
/// CPU is busy doing other things, which may increase performance (especially for RX)
/// at the cost of more RAM usage.
pub struct PacketQueue<const TX: usize, const RX: usize> {
    tx_desc: [TDes; TX],
    rx_desc: [RDes; RX],
    tx_buf: [Packet<TX_BUFFER_SIZE>; TX],
    rx_buf: [Packet<RX_BUFFER_SIZE>; RX],
}

impl<const TX: usize, const RX: usize> PacketQueue<TX, RX> {
    /// Create a new packet queue.
    pub const fn new() -> Self {
        const NEW_TDES: TDes = TDes::new();
        const NEW_RDES: RDes = RDes::new();
        Self {
            tx_desc: [NEW_TDES; TX],
            rx_desc: [NEW_RDES; RX],
            tx_buf: [Packet([0; TX_BUFFER_SIZE]); TX],
            rx_buf: [Packet([0; RX_BUFFER_SIZE]); RX],
        }
    }

    /// Initialize a packet queue in-place.
    ///
    /// This can be helpful to avoid accidentally stack-allocating the packet queue in the stack. The
    /// Rust compiler can sometimes be a bit dumb when working with large owned values: if you call `new()`
    /// and then store the returned PacketQueue in its final place (like a `static`), the compiler might
    /// place it temporarily on the stack then move it. Since this struct is quite big, it may result
    /// in a stack overflow.
    ///
    /// With this function, you can create an uninitialized `static` with type `MaybeUninit<PacketQueue<...>>`
    /// and initialize it in-place, guaranteeing no stack usage.
    ///
    /// After calling this function, calling `assume_init` on the MaybeUninit is guaranteed safe.
    pub fn init(this: &mut MaybeUninit<Self>) {
        unsafe {
            this.as_mut_ptr().write_bytes(0u8, 1);
        }
    }
}

static WAKER: AtomicWaker = AtomicWaker::new();

impl<'d, T: Instance, P: PHY> embassy_net_driver::Driver for Ethernet<'d, T, P> {
    type RxToken<'a> = RxToken<'a, 'd> where Self: 'a;
    type TxToken<'a> = TxToken<'a, 'd> where Self: 'a;

    fn receive(&mut self, cx: &mut Context) -> Option<(Self::RxToken<'_>, Self::TxToken<'_>)> {
        WAKER.register(cx.waker());
        if self.rx.available().is_some() && self.tx.available().is_some() {
            Some((RxToken { rx: &mut self.rx }, TxToken { tx: &mut self.tx }))
        } else {
            None
        }
    }

    fn transmit(&mut self, cx: &mut Context) -> Option<Self::TxToken<'_>> {
        WAKER.register(cx.waker());
        if self.tx.available().is_some() {
            Some(TxToken { tx: &mut self.tx })
        } else {
            None
        }
    }

    fn capabilities(&self) -> Capabilities {
        let mut caps = Capabilities::default();
        caps.max_transmission_unit = MTU;
        caps.max_burst_size = Some(self.tx.len());
        caps
    }

    fn link_state(&mut self, cx: &mut Context) -> LinkState {
        if self.phy.poll_link(&mut self.station_management, cx) {
            LinkState::Up
        } else {
            LinkState::Down
        }
    }

    fn hardware_address(&self) -> HardwareAddress {
        HardwareAddress::Ethernet(self.mac_addr)
    }
}

/// `embassy-net` RX token.
pub struct RxToken<'a, 'd> {
    rx: &'a mut RDesRing<'d>,
}

impl<'a, 'd> embassy_net_driver::RxToken for RxToken<'a, 'd> {
    fn consume<R, F>(self, f: F) -> R
    where
        F: FnOnce(&mut [u8]) -> R,
    {
        // NOTE(unwrap): we checked the queue wasn't full when creating the token.
        let pkt = unwrap!(self.rx.available());
        let r = f(pkt);
        self.rx.pop_packet();
        r
    }
}

/// `embassy-net` TX token.
pub struct TxToken<'a, 'd> {
    tx: &'a mut TDesRing<'d>,
}

impl<'a, 'd> embassy_net_driver::TxToken for TxToken<'a, 'd> {
    fn consume<R, F>(self, len: usize, f: F) -> R
    where
        F: FnOnce(&mut [u8]) -> R,
    {
        // NOTE(unwrap): we checked the queue wasn't full when creating the token.
        let pkt = unwrap!(self.tx.available());
        let r = f(&mut pkt[..len]);
        self.tx.transmit(len);
        r
    }
}

/// Station Management Interface (SMI) on an ethernet PHY
///
/// # Safety
///
/// The methods cannot move out of self
pub unsafe trait StationManagement {
    /// Read a register over SMI.
    fn smi_read(&mut self, phy_addr: u8, reg: u8) -> u16;
    /// Write a register over SMI.
    fn smi_write(&mut self, phy_addr: u8, reg: u8, val: u16);
}

/// Traits for an Ethernet PHY
///
/// # Safety
///
/// The methods cannot move S
pub unsafe trait PHY {
    /// Reset PHY and wait for it to come out of reset.
    fn phy_reset<S: StationManagement>(&mut self, sm: &mut S);
    /// PHY initialisation.
    fn phy_init<S: StationManagement>(&mut self, sm: &mut S);
    /// Poll link to see if it is up and FD with 100Mbps
    fn poll_link<S: StationManagement>(&mut self, sm: &mut S, cx: &mut Context) -> bool;
}

pub(crate) mod sealed {
    pub trait Instance {
        fn regs() -> crate::pac::eth::Eth;
    }
}

/// Ethernet instance.
pub trait Instance: sealed::Instance + Send + 'static {}

impl sealed::Instance for crate::peripherals::ETH {
    fn regs() -> crate::pac::eth::Eth {
        crate::pac::ETH
    }
}
impl Instance for crate::peripherals::ETH {}

pin_trait!(RefClkPin, Instance);
pin_trait!(MDIOPin, Instance);
pin_trait!(MDCPin, Instance);
pin_trait!(CRSPin, Instance);
pin_trait!(RXD0Pin, Instance);
pin_trait!(RXD1Pin, Instance);
pin_trait!(TXD0Pin, Instance);
pin_trait!(TXD1Pin, Instance);
pin_trait!(TXEnPin, Instance);