1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
//! Random Number Generator (RNG)
#![macro_use]

use core::future::poll_fn;
use core::marker::PhantomData;
use core::task::Poll;

use embassy_hal_internal::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
use rand_core::{CryptoRng, RngCore};

use crate::interrupt::typelevel::Interrupt;
use crate::{interrupt, pac, peripherals, Peripheral};

static RNG_WAKER: AtomicWaker = AtomicWaker::new();

/// RNG error
#[derive(Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
    /// Seed error.
    SeedError,
    /// Clock error. Double-check the RCC configuration,
    /// see the Reference Manual for details on restrictions
    /// on RNG clocks.
    ClockError,
}

/// RNG interrupt handler.
pub struct InterruptHandler<T: Instance> {
    _phantom: PhantomData<T>,
}

impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
    unsafe fn on_interrupt() {
        let bits = T::regs().sr().read();
        if bits.drdy() || bits.seis() || bits.ceis() {
            T::regs().cr().modify(|reg| reg.set_ie(false));
            RNG_WAKER.wake();
        }
    }
}

/// RNG driver.
pub struct Rng<'d, T: Instance> {
    _inner: PeripheralRef<'d, T>,
}

impl<'d, T: Instance> Rng<'d, T> {
    /// Create a new RNG driver.
    pub fn new(
        inner: impl Peripheral<P = T> + 'd,
        _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
    ) -> Self {
        T::enable_and_reset();
        into_ref!(inner);
        let mut random = Self { _inner: inner };
        random.reset();

        T::Interrupt::unpend();
        unsafe { T::Interrupt::enable() };

        random
    }

    /// Reset the RNG.
    #[cfg(rng_v1)]
    pub fn reset(&mut self) {
        T::regs().cr().write(|reg| {
            reg.set_rngen(false);
        });
        T::regs().sr().modify(|reg| {
            reg.set_seis(false);
            reg.set_ceis(false);
        });
        T::regs().cr().modify(|reg| {
            reg.set_rngen(true);
        });
        // Reference manual says to discard the first.
        let _ = self.next_u32();
    }

    /// Reset the RNG.
    #[cfg(not(rng_v1))]
    pub fn reset(&mut self) {
        T::regs().cr().write(|reg| {
            reg.set_condrst(true);
            reg.set_nistc(pac::rng::vals::Nistc::CUSTOM);
            // set RNG config "A" according to reference manual
            // this has to be written within the same write access as setting the CONDRST bit
            reg.set_rng_config1(pac::rng::vals::RngConfig1::CONFIGA);
            reg.set_clkdiv(pac::rng::vals::Clkdiv::NODIV);
            reg.set_rng_config2(pac::rng::vals::RngConfig2::CONFIGA_B);
            reg.set_rng_config3(pac::rng::vals::RngConfig3::CONFIGA);
            reg.set_ced(true);
            reg.set_ie(false);
            reg.set_rngen(true);
        });
        T::regs().cr().modify(|reg| {
            reg.set_ced(false);
        });
        // wait for CONDRST to be set
        while !T::regs().cr().read().condrst() {}
        // magic number must be written immediately before every read or write access to HTCR
        T::regs().htcr().write(|w| w.set_htcfg(pac::rng::vals::Htcfg::MAGIC));
        // write recommended value according to reference manual
        // note: HTCR can only be written during conditioning
        T::regs()
            .htcr()
            .write(|w| w.set_htcfg(pac::rng::vals::Htcfg::RECOMMENDED));
        // finish conditioning
        T::regs().cr().modify(|reg| {
            reg.set_rngen(true);
            reg.set_condrst(false);
        });
        // wait for CONDRST to be reset
        while T::regs().cr().read().condrst() {}
    }

    /// Try to recover from a seed error.
    pub fn recover_seed_error(&mut self) {
        self.reset();
        // reset should also clear the SEIS flag
        if T::regs().sr().read().seis() {
            warn!("recovering from seed error failed");
            return;
        }
        // wait for SECS to be cleared by RNG
        while T::regs().sr().read().secs() {}
    }

    /// Fill the given slice with random values.
    pub async fn async_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
        for chunk in dest.chunks_mut(4) {
            let mut bits = T::regs().sr().read();
            if !bits.seis() && !bits.ceis() && !bits.drdy() {
                // wait for interrupt
                poll_fn(|cx| {
                    // quick check to avoid registration if already done.
                    let bits = T::regs().sr().read();
                    if bits.drdy() || bits.seis() || bits.ceis() {
                        return Poll::Ready(());
                    }
                    RNG_WAKER.register(cx.waker());
                    T::regs().cr().modify(|reg| reg.set_ie(true));
                    // Need to check condition **after** `register` to avoid a race
                    // condition that would result in lost notifications.
                    let bits = T::regs().sr().read();
                    if bits.drdy() || bits.seis() || bits.ceis() {
                        Poll::Ready(())
                    } else {
                        Poll::Pending
                    }
                })
                .await;

                // Re-read the status register after wait.
                bits = T::regs().sr().read()
            }
            if bits.seis() {
                // in case of noise-source or seed error we try to recover here
                // but we must not use the data in DR and we return an error
                // to leave retry-logic to the application
                self.recover_seed_error();
                return Err(Error::SeedError);
            } else if bits.ceis() {
                // clock error detected, DR could still be used but keep it safe,
                // clear the error and abort
                T::regs().sr().modify(|sr| sr.set_ceis(false));
                return Err(Error::ClockError);
            } else if bits.drdy() {
                // DR can be read up to four times until the output buffer is empty
                // DRDY is cleared automatically when that happens
                let random_word = T::regs().dr().read();
                // reference manual: always check if DR is zero
                if random_word == 0 {
                    return Err(Error::SeedError);
                }
                // write bytes to chunk
                for (dest, src) in chunk.iter_mut().zip(random_word.to_ne_bytes().iter()) {
                    *dest = *src
                }
            }
        }

        Ok(())
    }
}

impl<'d, T: Instance> RngCore for Rng<'d, T> {
    fn next_u32(&mut self) -> u32 {
        loop {
            let sr = T::regs().sr().read();
            if sr.seis() | sr.ceis() {
                self.reset();
            } else if sr.drdy() {
                return T::regs().dr().read();
            }
        }
    }

    fn next_u64(&mut self) -> u64 {
        let mut rand = self.next_u32() as u64;
        rand |= (self.next_u32() as u64) << 32;
        rand
    }

    fn fill_bytes(&mut self, dest: &mut [u8]) {
        for chunk in dest.chunks_mut(4) {
            let rand = self.next_u32();
            for (slot, num) in chunk.iter_mut().zip(rand.to_ne_bytes().iter()) {
                *slot = *num
            }
        }
    }

    fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> {
        self.fill_bytes(dest);
        Ok(())
    }
}

impl<'d, T: Instance> CryptoRng for Rng<'d, T> {}

pub(crate) mod sealed {
    use super::*;

    pub trait Instance {
        fn regs() -> pac::rng::Rng;
    }
}

/// RNG instance trait.
pub trait Instance: sealed::Instance + Peripheral<P = Self> + crate::rcc::RccPeripheral + 'static + Send {
    /// Interrupt for this RNG instance.
    type Interrupt: interrupt::typelevel::Interrupt;
}

foreach_interrupt!(
    ($inst:ident, rng, RNG, GLOBAL, $irq:ident) => {
        impl Instance for peripherals::$inst {
            type Interrupt = crate::interrupt::typelevel::$irq;
        }

        impl sealed::Instance for peripherals::$inst {
            fn regs() -> crate::pac::rng::Rng {
                crate::pac::$inst
            }
        }
    };
);