embassy_stm32/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
#![cfg_attr(not(test), no_std)]
#![allow(async_fn_in_trait)]
#![cfg_attr(
docsrs,
doc = "<div style='padding:30px;background:#810;color:#fff;text-align:center;'><p>You might want to <a href='https://docs.embassy.dev/embassy-stm32'>browse the `embassy-stm32` documentation on the Embassy website</a> instead.</p><p>The documentation here on `docs.rs` is built for a single chip only (stm32h7, stm32h7rs55 in particular), while on the Embassy website you can pick your exact chip from the top menu. Available peripherals and their APIs change depending on the chip.</p></div>\n\n"
)]
#![doc = include_str!("../README.md")]
#![warn(missing_docs)]
//! ## Feature flags
#![doc = document_features::document_features!(feature_label = r#"<span class="stab portability"><code>{feature}</code></span>"#)]
// This must go FIRST so that all the other modules see its macros.
mod fmt;
include!(concat!(env!("OUT_DIR"), "/_macros.rs"));
// Utilities
mod macros;
pub mod time;
/// Operating modes for peripherals.
pub mod mode {
trait SealedMode {}
/// Operating mode for a peripheral.
#[allow(private_bounds)]
pub trait Mode: SealedMode {}
macro_rules! impl_mode {
($name:ident) => {
impl SealedMode for $name {}
impl Mode for $name {}
};
}
/// Blocking mode.
pub struct Blocking;
/// Async mode.
pub struct Async;
impl_mode!(Blocking);
impl_mode!(Async);
}
// Always-present hardware
pub mod dma;
pub mod gpio;
pub mod rcc;
#[cfg(feature = "_time-driver")]
mod time_driver;
pub mod timer;
// Sometimes-present hardware
#[cfg(adc)]
pub mod adc;
#[cfg(can)]
pub mod can;
// FIXME: Cordic driver cause stm32u5a5zj crash
#[cfg(all(cordic, not(any(stm32u5a5, stm32u5a9))))]
pub mod cordic;
#[cfg(crc)]
pub mod crc;
#[cfg(cryp)]
pub mod cryp;
#[cfg(dac)]
pub mod dac;
#[cfg(dcmi)]
pub mod dcmi;
#[cfg(dsihost)]
pub mod dsihost;
#[cfg(dts)]
pub mod dts;
#[cfg(eth)]
pub mod eth;
#[cfg(feature = "exti")]
pub mod exti;
pub mod flash;
#[cfg(fmc)]
pub mod fmc;
#[cfg(hash)]
pub mod hash;
#[cfg(hrtim)]
pub mod hrtim;
#[cfg(hsem)]
pub mod hsem;
#[cfg(hspi)]
pub mod hspi;
#[cfg(i2c)]
pub mod i2c;
#[cfg(any(all(spi_v1, rcc_f4), spi_v3))]
pub mod i2s;
#[cfg(stm32wb)]
pub mod ipcc;
#[cfg(feature = "low-power")]
pub mod low_power;
#[cfg(lptim)]
pub mod lptim;
#[cfg(ltdc)]
pub mod ltdc;
#[cfg(opamp)]
pub mod opamp;
#[cfg(octospi)]
pub mod ospi;
#[cfg(quadspi)]
pub mod qspi;
#[cfg(rng)]
pub mod rng;
#[cfg(all(rtc, not(rtc_v1)))]
pub mod rtc;
#[cfg(sai)]
pub mod sai;
#[cfg(sdmmc)]
pub mod sdmmc;
#[cfg(spdifrx)]
pub mod spdifrx;
#[cfg(spi)]
pub mod spi;
#[cfg(tsc)]
pub mod tsc;
#[cfg(ucpd)]
pub mod ucpd;
#[cfg(uid)]
pub mod uid;
#[cfg(usart)]
pub mod usart;
#[cfg(any(usb, otg))]
pub mod usb;
#[cfg(iwdg)]
pub mod wdg;
// This must go last, so that it sees all the impl_foo! macros defined earlier.
pub(crate) mod _generated {
#![allow(dead_code)]
#![allow(unused_imports)]
#![allow(non_snake_case)]
#![allow(missing_docs)]
include!(concat!(env!("OUT_DIR"), "/_generated.rs"));
}
pub use crate::_generated::interrupt;
/// Macro to bind interrupts to handlers.
///
/// This defines the right interrupt handlers, and creates a unit struct (like `struct Irqs;`)
/// and implements the right [`Binding`]s for it. You can pass this struct to drivers to
/// prove at compile-time that the right interrupts have been bound.
///
/// Example of how to bind one interrupt:
///
/// ```rust,ignore
/// use embassy_stm32::{bind_interrupts, usb, peripherals};
///
/// bind_interrupts!(struct Irqs {
/// OTG_FS => usb::InterruptHandler<peripherals::USB_OTG_FS>;
/// });
/// ```
///
/// Example of how to bind multiple interrupts, and multiple handlers to each interrupt, in a single macro invocation:
///
/// ```rust,ignore
/// use embassy_stm32::{bind_interrupts, i2c, peripherals};
///
/// bind_interrupts!(struct Irqs {
/// I2C1 => i2c::EventInterruptHandler<peripherals::I2C1>, i2c::ErrorInterruptHandler<peripherals::I2C1>;
/// I2C2_3 => i2c::EventInterruptHandler<peripherals::I2C2>, i2c::ErrorInterruptHandler<peripherals::I2C2>,
/// i2c::EventInterruptHandler<peripherals::I2C3>, i2c::ErrorInterruptHandler<peripherals::I2C3>;
/// });
/// ```
// developer note: this macro can't be in `embassy-hal-internal` due to the use of `$crate`.
#[macro_export]
macro_rules! bind_interrupts {
($vis:vis struct $name:ident {
$(
$(#[cfg($cond_irq:meta)])?
$irq:ident => $(
$(#[cfg($cond_handler:meta)])?
$handler:ty
),*;
)*
}) => {
#[derive(Copy, Clone)]
$vis struct $name;
$(
#[allow(non_snake_case)]
#[no_mangle]
$(#[cfg($cond_irq)])?
unsafe extern "C" fn $irq() {
$(
$(#[cfg($cond_handler)])?
<$handler as $crate::interrupt::typelevel::Handler<$crate::interrupt::typelevel::$irq>>::on_interrupt();
)*
}
$(#[cfg($cond_irq)])?
$crate::bind_interrupts!(@inner
$(
$(#[cfg($cond_handler)])?
unsafe impl $crate::interrupt::typelevel::Binding<$crate::interrupt::typelevel::$irq, $handler> for $name {}
)*
);
)*
};
(@inner $($t:tt)*) => {
$($t)*
}
}
// Reexports
pub use _generated::{peripherals, Peripherals};
pub use embassy_hal_internal::{into_ref, Peripheral, PeripheralRef};
#[cfg(feature = "unstable-pac")]
pub use stm32_metapac as pac;
#[cfg(not(feature = "unstable-pac"))]
pub(crate) use stm32_metapac as pac;
use crate::interrupt::Priority;
#[cfg(feature = "rt")]
pub use crate::pac::NVIC_PRIO_BITS;
/// `embassy-stm32` global configuration.
#[non_exhaustive]
#[derive(Clone, Copy)]
pub struct Config {
/// RCC config.
pub rcc: rcc::Config,
/// Enable debug during sleep and stop.
///
/// May increase power consumption. Defaults to true.
#[cfg(dbgmcu)]
pub enable_debug_during_sleep: bool,
/// On low-power boards (eg. `stm32l4`, `stm32l5` and `stm32u5`),
/// some GPIO pins are powered by an auxiliary, independent power supply (`VDDIO2`),
/// which needs to be enabled before these pins can be used.
///
/// May increase power consumption. Defaults to true.
#[cfg(any(stm32l4, stm32l5, stm32u5))]
pub enable_independent_io_supply: bool,
/// On the U5 series all analog peripherals are powered by a separate supply.
#[cfg(stm32u5)]
pub enable_independent_analog_supply: bool,
/// BDMA interrupt priority.
///
/// Defaults to P0 (highest).
#[cfg(bdma)]
pub bdma_interrupt_priority: Priority,
/// DMA interrupt priority.
///
/// Defaults to P0 (highest).
#[cfg(dma)]
pub dma_interrupt_priority: Priority,
/// GPDMA interrupt priority.
///
/// Defaults to P0 (highest).
#[cfg(gpdma)]
pub gpdma_interrupt_priority: Priority,
/// Enables UCPD1 dead battery functionality.
///
/// Defaults to false (disabled).
#[cfg(peri_ucpd1)]
pub enable_ucpd1_dead_battery: bool,
/// Enables UCPD2 dead battery functionality.
///
/// Defaults to false (disabled).
#[cfg(peri_ucpd2)]
pub enable_ucpd2_dead_battery: bool,
}
impl Default for Config {
fn default() -> Self {
Self {
rcc: Default::default(),
#[cfg(dbgmcu)]
enable_debug_during_sleep: true,
#[cfg(any(stm32l4, stm32l5, stm32u5))]
enable_independent_io_supply: true,
#[cfg(stm32u5)]
enable_independent_analog_supply: true,
#[cfg(bdma)]
bdma_interrupt_priority: Priority::P0,
#[cfg(dma)]
dma_interrupt_priority: Priority::P0,
#[cfg(gpdma)]
gpdma_interrupt_priority: Priority::P0,
#[cfg(peri_ucpd1)]
enable_ucpd1_dead_battery: false,
#[cfg(peri_ucpd2)]
enable_ucpd2_dead_battery: false,
}
}
}
/// Initialize the `embassy-stm32` HAL with the provided configuration.
///
/// This returns the peripheral singletons that can be used for creating drivers.
///
/// This should only be called once at startup, otherwise it panics.
#[cfg(not(feature = "_dual-core"))]
pub fn init(config: Config) -> Peripherals {
init_hw(config)
}
#[cfg(feature = "_dual-core")]
mod dual_core {
use core::cell::UnsafeCell;
use core::mem::MaybeUninit;
use core::sync::atomic::{AtomicUsize, Ordering};
use rcc::Clocks;
use super::*;
/// Object containing data that embassy needs to share between cores.
///
/// It cannot be initialized by the user. The intended use is:
///
/// ```
/// use core::mem::MaybeUninit;
/// use embassy_stm32::{init_secondary, SharedData};
///
/// #[link_section = ".ram_d3"]
/// static SHARED_DATA: MaybeUninit<SharedData> = MaybeUninit::uninit();
///
/// init_secondary(&SHARED_DATA);
/// ```
///
/// This static must be placed in the same position for both cores. How and where this is done is left to the user.
#[repr(C)]
pub struct SharedData {
init_flag: AtomicUsize,
clocks: UnsafeCell<MaybeUninit<Clocks>>,
config: UnsafeCell<MaybeUninit<SharedConfig>>,
}
unsafe impl Sync for SharedData {}
const INIT_DONE_FLAG: usize = 0xca11ab1e;
/// Initialize the `embassy-stm32` HAL with the provided configuration.
/// This function does the actual initialization of the hardware, in contrast to [init_secondary] or [try_init_secondary].
/// Any core can do the init, but it's important only one core does it.
///
/// This returns the peripheral singletons that can be used for creating drivers.
///
/// This should only be called once at startup, otherwise it panics.
///
/// The `shared_data` is used to coordinate the init with the second core. Read the [SharedData] docs
/// for more information on its requirements.
pub fn init_primary(config: Config, shared_data: &'static MaybeUninit<SharedData>) -> Peripherals {
let shared_data = unsafe { shared_data.assume_init_ref() };
// Write the flag as soon as possible. Reading this flag uninitialized in the `init_secondary`
// is maybe unsound? Unclear. If it is indeed unsound, writing it sooner doesn't fix it all,
// but improves the odds of it going right
shared_data.init_flag.store(0, Ordering::SeqCst);
rcc::set_freqs_ptr(shared_data.clocks.get());
let p = init_hw(config);
unsafe { *shared_data.config.get() }.write(config.into());
shared_data.init_flag.store(INIT_DONE_FLAG, Ordering::SeqCst);
p
}
/// Try to initialize the `embassy-stm32` HAL based on the init done by the other core using [init_primary].
///
/// This returns the peripheral singletons that can be used for creating drivers if the other core is done with its init.
/// If the other core is not done yet, this will return `None`.
///
/// This should only be called once at startup, otherwise it may panic.
///
/// The `shared_data` is used to coordinate the init with the second core. Read the [SharedData] docs
/// for more information on its requirements.
pub fn try_init_secondary(shared_data: &'static MaybeUninit<SharedData>) -> Option<Peripherals> {
let shared_data = unsafe { shared_data.assume_init_ref() };
if shared_data.init_flag.load(Ordering::SeqCst) != INIT_DONE_FLAG {
return None;
}
// Separate load and store to support the CM0 of the STM32WL
shared_data.init_flag.store(0, Ordering::SeqCst);
Some(init_secondary_hw(shared_data))
}
/// Initialize the `embassy-stm32` HAL based on the init done by the other core using [init_primary].
///
/// This returns the peripheral singletons that can be used for creating drivers when the other core is done with its init.
/// If the other core is not done yet, this will spinloop wait on it.
///
/// This should only be called once at startup, otherwise it may panic.
///
/// The `shared_data` is used to coordinate the init with the second core. Read the [SharedData] docs
/// for more information on its requirements.
pub fn init_secondary(shared_data: &'static MaybeUninit<SharedData>) -> Peripherals {
loop {
if let Some(p) = try_init_secondary(shared_data) {
return p;
}
}
}
fn init_secondary_hw(shared_data: &'static SharedData) -> Peripherals {
rcc::set_freqs_ptr(shared_data.clocks.get());
let config = unsafe { (*shared_data.config.get()).assume_init() };
// We use different timers on the different cores, so we have to still initialize one here
critical_section::with(|cs| {
unsafe {
dma::init(
cs,
#[cfg(bdma)]
config.bdma_interrupt_priority,
#[cfg(dma)]
config.dma_interrupt_priority,
#[cfg(gpdma)]
config.gpdma_interrupt_priority,
)
}
#[cfg(feature = "_time-driver")]
// must be after rcc init
time_driver::init(cs);
});
Peripherals::take()
}
#[repr(C)]
#[derive(Clone, Copy)]
struct SharedConfig {
#[cfg(bdma)]
bdma_interrupt_priority: Priority,
#[cfg(dma)]
dma_interrupt_priority: Priority,
#[cfg(gpdma)]
gpdma_interrupt_priority: Priority,
}
impl From<Config> for SharedConfig {
fn from(value: Config) -> Self {
let Config {
#[cfg(bdma)]
bdma_interrupt_priority,
#[cfg(dma)]
dma_interrupt_priority,
#[cfg(gpdma)]
gpdma_interrupt_priority,
..
} = value;
SharedConfig {
#[cfg(bdma)]
bdma_interrupt_priority,
#[cfg(dma)]
dma_interrupt_priority,
#[cfg(gpdma)]
gpdma_interrupt_priority,
}
}
}
}
#[cfg(feature = "_dual-core")]
pub use dual_core::*;
fn init_hw(config: Config) -> Peripherals {
critical_section::with(|cs| {
let p = Peripherals::take_with_cs(cs);
#[cfg(dbgmcu)]
crate::pac::DBGMCU.cr().modify(|cr| {
#[cfg(dbgmcu_h5)]
{
cr.set_stop(config.enable_debug_during_sleep);
cr.set_standby(config.enable_debug_during_sleep);
}
#[cfg(any(dbgmcu_f0, dbgmcu_c0, dbgmcu_g0, dbgmcu_u0, dbgmcu_u5, dbgmcu_wba, dbgmcu_l5))]
{
cr.set_dbg_stop(config.enable_debug_during_sleep);
cr.set_dbg_standby(config.enable_debug_during_sleep);
}
#[cfg(any(
dbgmcu_f1, dbgmcu_f2, dbgmcu_f3, dbgmcu_f4, dbgmcu_f7, dbgmcu_g4, dbgmcu_f7, dbgmcu_l0, dbgmcu_l1,
dbgmcu_l4, dbgmcu_wb, dbgmcu_wl
))]
{
cr.set_dbg_sleep(config.enable_debug_during_sleep);
cr.set_dbg_stop(config.enable_debug_during_sleep);
cr.set_dbg_standby(config.enable_debug_during_sleep);
}
#[cfg(dbgmcu_h7)]
{
cr.set_d1dbgcken(config.enable_debug_during_sleep);
cr.set_d3dbgcken(config.enable_debug_during_sleep);
cr.set_dbgsleep_d1(config.enable_debug_during_sleep);
cr.set_dbgstby_d1(config.enable_debug_during_sleep);
cr.set_dbgstop_d1(config.enable_debug_during_sleep);
}
});
#[cfg(not(any(stm32f1, stm32wb, stm32wl)))]
rcc::enable_and_reset_with_cs::<peripherals::SYSCFG>(cs);
#[cfg(not(any(stm32h5, stm32h7, stm32h7rs, stm32wb, stm32wl)))]
rcc::enable_and_reset_with_cs::<peripherals::PWR>(cs);
#[cfg(not(any(stm32f2, stm32f4, stm32f7, stm32l0, stm32h5, stm32h7, stm32h7rs)))]
rcc::enable_and_reset_with_cs::<peripherals::FLASH>(cs);
// Enable the VDDIO2 power supply on chips that have it.
// Note that this requires the PWR peripheral to be enabled first.
#[cfg(any(stm32l4, stm32l5))]
{
crate::pac::PWR.cr2().modify(|w| {
// The official documentation states that we should ideally enable VDDIO2
// through the PVME2 bit, but it looks like this isn't required,
// and CubeMX itself skips this step.
w.set_iosv(config.enable_independent_io_supply);
});
}
#[cfg(stm32u5)]
{
crate::pac::PWR.svmcr().modify(|w| {
w.set_io2sv(config.enable_independent_io_supply);
});
if config.enable_independent_analog_supply {
crate::pac::PWR.svmcr().modify(|w| {
w.set_avm1en(true);
});
while !crate::pac::PWR.svmsr().read().vdda1rdy() {}
crate::pac::PWR.svmcr().modify(|w| {
w.set_asv(true);
});
} else {
crate::pac::PWR.svmcr().modify(|w| {
w.set_avm1en(false);
w.set_avm2en(false);
});
}
}
// dead battery functionality is still present on these
// chips despite them not having UCPD- disable it
#[cfg(any(stm32g070, stm32g0b0))]
{
crate::pac::SYSCFG.cfgr1().modify(|w| {
w.set_ucpd1_strobe(true);
w.set_ucpd2_strobe(true);
});
}
unsafe {
#[cfg(ucpd)]
ucpd::init(
cs,
#[cfg(peri_ucpd1)]
config.enable_ucpd1_dead_battery,
#[cfg(peri_ucpd2)]
config.enable_ucpd2_dead_battery,
);
#[cfg(feature = "_split-pins-enabled")]
crate::pac::SYSCFG.pmcr().modify(|pmcr| {
#[cfg(feature = "split-pa0")]
pmcr.set_pa0so(true);
#[cfg(feature = "split-pa1")]
pmcr.set_pa1so(true);
#[cfg(feature = "split-pc2")]
pmcr.set_pc2so(true);
#[cfg(feature = "split-pc3")]
pmcr.set_pc3so(true);
});
gpio::init(cs);
dma::init(
cs,
#[cfg(bdma)]
config.bdma_interrupt_priority,
#[cfg(dma)]
config.dma_interrupt_priority,
#[cfg(gpdma)]
config.gpdma_interrupt_priority,
);
#[cfg(feature = "exti")]
exti::init(cs);
rcc::init(config.rcc);
// must be after rcc init
#[cfg(feature = "_time-driver")]
time_driver::init(cs);
#[cfg(feature = "low-power")]
{
crate::rcc::REFCOUNT_STOP2 = 0;
crate::rcc::REFCOUNT_STOP1 = 0;
}
}
p
})
}