embassy_stm32/i2c/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
//! Inter-Integrated-Circuit (I2C)
#![macro_use]

#[cfg_attr(i2c_v1, path = "v1.rs")]
#[cfg_attr(any(i2c_v2, i2c_v3), path = "v2.rs")]
mod _version;

use core::future::Future;
use core::iter;
use core::marker::PhantomData;

use embassy_hal_internal::{Peripheral, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
#[cfg(feature = "time")]
use embassy_time::{Duration, Instant};

use crate::dma::ChannelAndRequest;
#[cfg(gpio_v2)]
use crate::gpio::Pull;
use crate::gpio::{AfType, AnyPin, OutputType, SealedPin as _, Speed};
use crate::interrupt::typelevel::Interrupt;
use crate::mode::{Async, Blocking, Mode};
use crate::rcc::{RccInfo, SealedRccPeripheral};
use crate::time::Hertz;
use crate::{interrupt, peripherals};

/// I2C error.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
    /// Bus error
    Bus,
    /// Arbitration lost
    Arbitration,
    /// ACK not received (either to the address or to a data byte)
    Nack,
    /// Timeout
    Timeout,
    /// CRC error
    Crc,
    /// Overrun error
    Overrun,
    /// Zero-length transfers are not allowed.
    ZeroLengthTransfer,
}

/// I2C config
#[non_exhaustive]
#[derive(Copy, Clone)]
pub struct Config {
    /// Enable internal pullup on SDA.
    ///
    /// Using external pullup resistors is recommended for I2C. If you do
    /// have external pullups you should not enable this.
    #[cfg(gpio_v2)]
    pub sda_pullup: bool,
    /// Enable internal pullup on SCL.
    ///
    /// Using external pullup resistors is recommended for I2C. If you do
    /// have external pullups you should not enable this.
    #[cfg(gpio_v2)]
    pub scl_pullup: bool,
    /// Timeout.
    #[cfg(feature = "time")]
    pub timeout: embassy_time::Duration,
}

impl Default for Config {
    fn default() -> Self {
        Self {
            #[cfg(gpio_v2)]
            sda_pullup: false,
            #[cfg(gpio_v2)]
            scl_pullup: false,
            #[cfg(feature = "time")]
            timeout: embassy_time::Duration::from_millis(1000),
        }
    }
}

impl Config {
    fn scl_af(&self) -> AfType {
        #[cfg(gpio_v1)]
        return AfType::output(OutputType::OpenDrain, Speed::Medium);
        #[cfg(gpio_v2)]
        return AfType::output_pull(
            OutputType::OpenDrain,
            Speed::Medium,
            match self.scl_pullup {
                true => Pull::Up,
                false => Pull::None,
            },
        );
    }

    fn sda_af(&self) -> AfType {
        #[cfg(gpio_v1)]
        return AfType::output(OutputType::OpenDrain, Speed::Medium);
        #[cfg(gpio_v2)]
        return AfType::output_pull(
            OutputType::OpenDrain,
            Speed::Medium,
            match self.sda_pullup {
                true => Pull::Up,
                false => Pull::None,
            },
        );
    }
}

/// I2C driver.
pub struct I2c<'d, M: Mode> {
    info: &'static Info,
    state: &'static State,
    kernel_clock: Hertz,
    scl: Option<PeripheralRef<'d, AnyPin>>,
    sda: Option<PeripheralRef<'d, AnyPin>>,
    tx_dma: Option<ChannelAndRequest<'d>>,
    rx_dma: Option<ChannelAndRequest<'d>>,
    #[cfg(feature = "time")]
    timeout: Duration,
    _phantom: PhantomData<M>,
}

impl<'d> I2c<'d, Async> {
    /// Create a new I2C driver.
    pub fn new<T: Instance>(
        peri: impl Peripheral<P = T> + 'd,
        scl: impl Peripheral<P = impl SclPin<T>> + 'd,
        sda: impl Peripheral<P = impl SdaPin<T>> + 'd,
        _irq: impl interrupt::typelevel::Binding<T::EventInterrupt, EventInterruptHandler<T>>
            + interrupt::typelevel::Binding<T::ErrorInterrupt, ErrorInterruptHandler<T>>
            + 'd,
        tx_dma: impl Peripheral<P = impl TxDma<T>> + 'd,
        rx_dma: impl Peripheral<P = impl RxDma<T>> + 'd,
        freq: Hertz,
        config: Config,
    ) -> Self {
        Self::new_inner(
            peri,
            new_pin!(scl, config.scl_af()),
            new_pin!(sda, config.sda_af()),
            new_dma!(tx_dma),
            new_dma!(rx_dma),
            freq,
            config,
        )
    }
}

impl<'d> I2c<'d, Blocking> {
    /// Create a new blocking I2C driver.
    pub fn new_blocking<T: Instance>(
        peri: impl Peripheral<P = T> + 'd,
        scl: impl Peripheral<P = impl SclPin<T>> + 'd,
        sda: impl Peripheral<P = impl SdaPin<T>> + 'd,
        freq: Hertz,
        config: Config,
    ) -> Self {
        Self::new_inner(
            peri,
            new_pin!(scl, config.scl_af()),
            new_pin!(sda, config.sda_af()),
            None,
            None,
            freq,
            config,
        )
    }
}

impl<'d, M: Mode> I2c<'d, M> {
    /// Create a new I2C driver.
    fn new_inner<T: Instance>(
        _peri: impl Peripheral<P = T> + 'd,
        scl: Option<PeripheralRef<'d, AnyPin>>,
        sda: Option<PeripheralRef<'d, AnyPin>>,
        tx_dma: Option<ChannelAndRequest<'d>>,
        rx_dma: Option<ChannelAndRequest<'d>>,
        freq: Hertz,
        config: Config,
    ) -> Self {
        unsafe { T::EventInterrupt::enable() };
        unsafe { T::ErrorInterrupt::enable() };

        let mut this = Self {
            info: T::info(),
            state: T::state(),
            kernel_clock: T::frequency(),
            scl,
            sda,
            tx_dma,
            rx_dma,
            #[cfg(feature = "time")]
            timeout: config.timeout,
            _phantom: PhantomData,
        };
        this.enable_and_init(freq, config);
        this
    }

    fn enable_and_init(&mut self, freq: Hertz, config: Config) {
        self.info.rcc.enable_and_reset();
        self.init(freq, config);
    }

    fn timeout(&self) -> Timeout {
        Timeout {
            #[cfg(feature = "time")]
            deadline: Instant::now() + self.timeout,
        }
    }
}

impl<'d, M: Mode> Drop for I2c<'d, M> {
    fn drop(&mut self) {
        self.scl.as_ref().map(|x| x.set_as_disconnected());
        self.sda.as_ref().map(|x| x.set_as_disconnected());

        self.info.rcc.disable()
    }
}

#[derive(Copy, Clone)]
struct Timeout {
    #[cfg(feature = "time")]
    deadline: Instant,
}

#[allow(dead_code)]
impl Timeout {
    #[inline]
    fn check(self) -> Result<(), Error> {
        #[cfg(feature = "time")]
        if Instant::now() > self.deadline {
            return Err(Error::Timeout);
        }

        Ok(())
    }

    #[inline]
    fn with<R>(self, fut: impl Future<Output = Result<R, Error>>) -> impl Future<Output = Result<R, Error>> {
        #[cfg(feature = "time")]
        {
            use futures_util::FutureExt;

            embassy_futures::select::select(embassy_time::Timer::at(self.deadline), fut).map(|r| match r {
                embassy_futures::select::Either::First(_) => Err(Error::Timeout),
                embassy_futures::select::Either::Second(r) => r,
            })
        }

        #[cfg(not(feature = "time"))]
        fut
    }
}

struct State {
    #[allow(unused)]
    waker: AtomicWaker,
}

impl State {
    const fn new() -> Self {
        Self {
            waker: AtomicWaker::new(),
        }
    }
}

struct Info {
    regs: crate::pac::i2c::I2c,
    rcc: RccInfo,
}

peri_trait!(
    irqs: [EventInterrupt, ErrorInterrupt],
);

pin_trait!(SclPin, Instance);
pin_trait!(SdaPin, Instance);
dma_trait!(RxDma, Instance);
dma_trait!(TxDma, Instance);

/// Event interrupt handler.
pub struct EventInterruptHandler<T: Instance> {
    _phantom: PhantomData<T>,
}

impl<T: Instance> interrupt::typelevel::Handler<T::EventInterrupt> for EventInterruptHandler<T> {
    unsafe fn on_interrupt() {
        _version::on_interrupt::<T>()
    }
}

/// Error interrupt handler.
pub struct ErrorInterruptHandler<T: Instance> {
    _phantom: PhantomData<T>,
}

impl<T: Instance> interrupt::typelevel::Handler<T::ErrorInterrupt> for ErrorInterruptHandler<T> {
    unsafe fn on_interrupt() {
        _version::on_interrupt::<T>()
    }
}

foreach_peripheral!(
    (i2c, $inst:ident) => {
        #[allow(private_interfaces)]
        impl SealedInstance for peripherals::$inst {
            fn info() -> &'static Info {
                static INFO: Info = Info{
                    regs: crate::pac::$inst,
                    rcc: crate::peripherals::$inst::RCC_INFO,
                };
                &INFO
            }
            fn state() -> &'static State {
                static STATE: State = State::new();
                &STATE
            }
        }

        impl Instance for peripherals::$inst {
            type EventInterrupt = crate::_generated::peripheral_interrupts::$inst::EV;
            type ErrorInterrupt = crate::_generated::peripheral_interrupts::$inst::ER;
        }
    };
);

impl<'d, M: Mode> embedded_hal_02::blocking::i2c::Read for I2c<'d, M> {
    type Error = Error;

    fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
        self.blocking_read(address, buffer)
    }
}

impl<'d, M: Mode> embedded_hal_02::blocking::i2c::Write for I2c<'d, M> {
    type Error = Error;

    fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
        self.blocking_write(address, write)
    }
}

impl<'d, M: Mode> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, M> {
    type Error = Error;

    fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
        self.blocking_write_read(address, write, read)
    }
}

impl embedded_hal_1::i2c::Error for Error {
    fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
        match *self {
            Self::Bus => embedded_hal_1::i2c::ErrorKind::Bus,
            Self::Arbitration => embedded_hal_1::i2c::ErrorKind::ArbitrationLoss,
            Self::Nack => {
                embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Unknown)
            }
            Self::Timeout => embedded_hal_1::i2c::ErrorKind::Other,
            Self::Crc => embedded_hal_1::i2c::ErrorKind::Other,
            Self::Overrun => embedded_hal_1::i2c::ErrorKind::Overrun,
            Self::ZeroLengthTransfer => embedded_hal_1::i2c::ErrorKind::Other,
        }
    }
}

impl<'d, M: Mode> embedded_hal_1::i2c::ErrorType for I2c<'d, M> {
    type Error = Error;
}

impl<'d, M: Mode> embedded_hal_1::i2c::I2c for I2c<'d, M> {
    fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
        self.blocking_read(address, read)
    }

    fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
        self.blocking_write(address, write)
    }

    fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
        self.blocking_write_read(address, write, read)
    }

    fn transaction(
        &mut self,
        address: u8,
        operations: &mut [embedded_hal_1::i2c::Operation<'_>],
    ) -> Result<(), Self::Error> {
        self.blocking_transaction(address, operations)
    }
}

impl<'d> embedded_hal_async::i2c::I2c for I2c<'d, Async> {
    async fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
        self.read(address, read).await
    }

    async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
        self.write(address, write).await
    }

    async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
        self.write_read(address, write, read).await
    }

    async fn transaction(
        &mut self,
        address: u8,
        operations: &mut [embedded_hal_1::i2c::Operation<'_>],
    ) -> Result<(), Self::Error> {
        self.transaction(address, operations).await
    }
}

/// Frame type in I2C transaction.
///
/// This tells each method what kind of framing to use, to generate a (repeated) start condition (ST
/// or SR), and/or a stop condition (SP). For read operations, this also controls whether to send an
/// ACK or NACK after the last byte received.
///
/// For write operations, the following options are identical because they differ only in the (N)ACK
/// treatment relevant for read operations:
///
/// - `FirstFrame` and `FirstAndNextFrame`
/// - `NextFrame` and `LastFrameNoStop`
///
/// Abbreviations used below:
///
/// - `ST` = start condition
/// - `SR` = repeated start condition
/// - `SP` = stop condition
/// - `ACK`/`NACK` = last byte in read operation
#[derive(Copy, Clone)]
#[allow(dead_code)]
enum FrameOptions {
    /// `[ST/SR]+[NACK]+[SP]` First frame (of this type) in transaction and also last frame overall.
    FirstAndLastFrame,
    /// `[ST/SR]+[NACK]` First frame of this type in transaction, last frame in a read operation but
    /// not the last frame overall.
    FirstFrame,
    /// `[ST/SR]+[ACK]` First frame of this type in transaction, neither last frame overall nor last
    /// frame in a read operation.
    FirstAndNextFrame,
    /// `[ACK]` Middle frame in a read operation (neither first nor last).
    NextFrame,
    /// `[NACK]+[SP]` Last frame overall in this transaction but not the first frame.
    LastFrame,
    /// `[NACK]` Last frame in a read operation but not last frame overall in this transaction.
    LastFrameNoStop,
}

#[allow(dead_code)]
impl FrameOptions {
    /// Sends start or repeated start condition before transfer.
    fn send_start(self) -> bool {
        match self {
            Self::FirstAndLastFrame | Self::FirstFrame | Self::FirstAndNextFrame => true,
            Self::NextFrame | Self::LastFrame | Self::LastFrameNoStop => false,
        }
    }

    /// Sends stop condition after transfer.
    fn send_stop(self) -> bool {
        match self {
            Self::FirstAndLastFrame | Self::LastFrame => true,
            Self::FirstFrame | Self::FirstAndNextFrame | Self::NextFrame | Self::LastFrameNoStop => false,
        }
    }

    /// Sends NACK after last byte received, indicating end of read operation.
    fn send_nack(self) -> bool {
        match self {
            Self::FirstAndLastFrame | Self::FirstFrame | Self::LastFrame | Self::LastFrameNoStop => true,
            Self::FirstAndNextFrame | Self::NextFrame => false,
        }
    }
}

/// Iterates over operations in transaction.
///
/// Returns necessary frame options for each operation to uphold the [transaction contract] and have
/// the right start/stop/(N)ACK conditions on the wire.
///
/// [transaction contract]: embedded_hal_1::i2c::I2c::transaction
#[allow(dead_code)]
fn operation_frames<'a, 'b: 'a>(
    operations: &'a mut [embedded_hal_1::i2c::Operation<'b>],
) -> Result<impl IntoIterator<Item = (&'a mut embedded_hal_1::i2c::Operation<'b>, FrameOptions)>, Error> {
    use embedded_hal_1::i2c::Operation::{Read, Write};

    // Check empty read buffer before starting transaction. Otherwise, we would risk halting with an
    // error in the middle of the transaction.
    //
    // In principle, we could allow empty read frames within consecutive read operations, as long as
    // at least one byte remains in the final (merged) read operation, but that makes the logic more
    // complicated and error-prone.
    if operations.iter().any(|op| match op {
        Read(read) => read.is_empty(),
        Write(_) => false,
    }) {
        return Err(Error::Overrun);
    }

    let mut operations = operations.iter_mut().peekable();

    let mut next_first_frame = true;

    Ok(iter::from_fn(move || {
        let Some(op) = operations.next() else {
            return None;
        };

        // Is `op` first frame of its type?
        let first_frame = next_first_frame;
        let next_op = operations.peek();

        // Get appropriate frame options as combination of the following properties:
        //
        // - For each first operation of its type, generate a (repeated) start condition.
        // - For the last operation overall in the entire transaction, generate a stop condition.
        // - For read operations, check the next operation: if it is also a read operation, we merge
        //   these and send ACK for all bytes in the current operation; send NACK only for the final
        //   read operation's last byte (before write or end of entire transaction) to indicate last
        //   byte read and release the bus for transmission of the bus master's next byte (or stop).
        //
        // We check the third property unconditionally, i.e. even for write opeartions. This is okay
        // because the resulting frame options are identical for write operations.
        let frame = match (first_frame, next_op) {
            (true, None) => FrameOptions::FirstAndLastFrame,
            (true, Some(Read(_))) => FrameOptions::FirstAndNextFrame,
            (true, Some(Write(_))) => FrameOptions::FirstFrame,
            //
            (false, None) => FrameOptions::LastFrame,
            (false, Some(Read(_))) => FrameOptions::NextFrame,
            (false, Some(Write(_))) => FrameOptions::LastFrameNoStop,
        };

        // Pre-calculate if `next_op` is the first operation of its type. We do this here and not at
        // the beginning of the loop because we hand out `op` as iterator value and cannot access it
        // anymore in the next iteration.
        next_first_frame = match (&op, next_op) {
            (_, None) => false,
            (Read(_), Some(Write(_))) | (Write(_), Some(Read(_))) => true,
            (Read(_), Some(Read(_))) | (Write(_), Some(Write(_))) => false,
        };

        Some((op, frame))
    }))
}