embassy_stm32/rcc/
bd.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
use core::sync::atomic::{compiler_fence, Ordering};

use crate::pac::common::{Reg, RW};
pub use crate::pac::rcc::vals::Rtcsel as RtcClockSource;
use crate::time::Hertz;

#[cfg(any(stm32f0, stm32f1, stm32f3))]
pub const LSI_FREQ: Hertz = Hertz(40_000);
#[cfg(not(any(stm32f0, stm32f1, stm32f3)))]
pub const LSI_FREQ: Hertz = Hertz(32_000);

#[allow(dead_code)]
#[derive(Clone, Copy)]
pub enum LseMode {
    Oscillator(LseDrive),
    Bypass,
}

#[derive(Clone, Copy)]
pub struct LseConfig {
    pub frequency: Hertz,
    pub mode: LseMode,
    /// If peripherals other than RTC/TAMP or RCC functions need the lse this bit must be set
    #[cfg(any(rcc_l5, rcc_u5, rcc_wle, rcc_wl5, rcc_wba))]
    pub peripherals_clocked: bool,
}

#[allow(dead_code)]
#[derive(Default, Clone, Copy)]
pub enum LseDrive {
    #[cfg(not(stm32h5))] // ES0565: LSE Low drive mode is not functional
    Low = 0,
    MediumLow = 0x01,
    #[default]
    MediumHigh = 0x02,
    High = 0x03,
}

// All families but these have the LSEDRV register
#[cfg(not(any(rcc_f1, rcc_f1cl, rcc_f100, rcc_f2, rcc_f4, rcc_f410, rcc_l1)))]
impl From<LseDrive> for crate::pac::rcc::vals::Lsedrv {
    fn from(value: LseDrive) -> Self {
        use crate::pac::rcc::vals::Lsedrv;

        match value {
            #[cfg(not(stm32h5))] // ES0565: LSE Low drive mode is not functional
            LseDrive::Low => Lsedrv::LOW,
            LseDrive::MediumLow => Lsedrv::MEDIUM_LOW,
            LseDrive::MediumHigh => Lsedrv::MEDIUM_HIGH,
            LseDrive::High => Lsedrv::HIGH,
        }
    }
}

#[cfg(not(any(rtc_v2l0, rtc_v2l1, stm32c0)))]
type Bdcr = crate::pac::rcc::regs::Bdcr;
#[cfg(any(rtc_v2l0, rtc_v2l1))]
type Bdcr = crate::pac::rcc::regs::Csr;
#[cfg(any(stm32c0))]
type Bdcr = crate::pac::rcc::regs::Csr1;

#[cfg(any(stm32c0))]
fn unlock() {}

#[cfg(not(any(stm32c0)))]
fn unlock() {
    #[cfg(any(stm32f0, stm32f1, stm32f2, stm32f3, stm32l0, stm32l1))]
    let cr = crate::pac::PWR.cr();
    #[cfg(not(any(stm32f0, stm32f1, stm32f2, stm32f3, stm32l0, stm32l1, stm32u5, stm32h5, stm32wba)))]
    let cr = crate::pac::PWR.cr1();
    #[cfg(any(stm32u5, stm32h5, stm32wba))]
    let cr = crate::pac::PWR.dbpcr();

    cr.modify(|w| w.set_dbp(true));
    while !cr.read().dbp() {}
}

fn bdcr() -> Reg<Bdcr, RW> {
    #[cfg(any(rtc_v2l0, rtc_v2l1))]
    return crate::pac::RCC.csr();
    #[cfg(not(any(rtc_v2l0, rtc_v2l1, stm32c0)))]
    return crate::pac::RCC.bdcr();
    #[cfg(any(stm32c0))]
    return crate::pac::RCC.csr1();
}

#[derive(Clone, Copy)]
pub struct LsConfig {
    pub rtc: RtcClockSource,
    pub lsi: bool,
    pub lse: Option<LseConfig>,
}

impl LsConfig {
    pub const fn default_lse() -> Self {
        Self {
            rtc: RtcClockSource::LSE,
            lse: Some(LseConfig {
                frequency: Hertz(32_768),
                mode: LseMode::Oscillator(LseDrive::MediumHigh),
                #[cfg(any(rcc_l5, rcc_u5, rcc_wle, rcc_wl5, rcc_wba))]
                peripherals_clocked: false,
            }),
            lsi: false,
        }
    }

    pub const fn default_lsi() -> Self {
        Self {
            rtc: RtcClockSource::LSI,
            lsi: true,
            lse: None,
        }
    }

    pub const fn off() -> Self {
        Self {
            rtc: RtcClockSource::DISABLE,
            lsi: false,
            lse: None,
        }
    }
}

impl Default for LsConfig {
    fn default() -> Self {
        // on L5, just the fact that LSI is enabled makes things crash.
        // TODO: investigate.

        #[cfg(not(stm32l5))]
        return Self::default_lsi();
        #[cfg(stm32l5)]
        return Self::off();
    }
}

impl LsConfig {
    pub(crate) fn init(&self) -> Option<Hertz> {
        let rtc_clk = match self.rtc {
            RtcClockSource::LSI => {
                assert!(self.lsi);
                Some(LSI_FREQ)
            }
            RtcClockSource::LSE => Some(self.lse.as_ref().unwrap().frequency),
            RtcClockSource::DISABLE => None,
            _ => todo!(),
        };

        let (lse_en, lse_byp, lse_drv) = match &self.lse {
            Some(c) => match c.mode {
                LseMode::Oscillator(lse_drv) => (true, false, Some(lse_drv)),
                LseMode::Bypass => (true, true, None),
            },
            None => (false, false, None),
        };
        #[cfg(any(rcc_l5, rcc_u5, rcc_wle, rcc_wl5, rcc_wba))]
        let lse_sysen = if let Some(lse) = self.lse {
            Some(lse.peripherals_clocked)
        } else {
            None
        };
        #[cfg(rcc_u0)]
        let lse_sysen = Some(lse_en);

        _ = lse_drv; // not all chips have it.

        // Disable backup domain write protection
        unlock();

        if self.lsi {
            #[cfg(any(stm32u5, stm32h5, stm32wba))]
            let csr = crate::pac::RCC.bdcr();
            #[cfg(not(any(stm32u5, stm32h5, stm32wba, stm32c0)))]
            let csr = crate::pac::RCC.csr();
            #[cfg(any(stm32c0))]
            let csr = crate::pac::RCC.csr2();

            #[cfg(not(any(rcc_wb, rcc_wba)))]
            csr.modify(|w| w.set_lsion(true));

            #[cfg(any(rcc_wb, rcc_wba))]
            csr.modify(|w| w.set_lsi1on(true));

            #[cfg(not(any(rcc_wb, rcc_wba)))]
            while !csr.read().lsirdy() {}

            #[cfg(any(rcc_wb, rcc_wba))]
            while !csr.read().lsi1rdy() {}
        }

        // backup domain configuration (LSEON, RTCEN, RTCSEL) is kept across resets.
        // once set, changing it requires a backup domain reset.
        // first check if the configuration matches what we want.

        // check if it's already enabled and in the source we want.
        let reg = bdcr().read();
        let mut ok = true;
        ok &= reg.rtcsel() == self.rtc;
        #[cfg(not(rcc_wba))]
        {
            ok &= reg.rtcen() == (self.rtc != RtcClockSource::DISABLE);
        }
        ok &= reg.lseon() == lse_en;
        ok &= reg.lsebyp() == lse_byp;
        #[cfg(any(rcc_l5, rcc_u5, rcc_wle, rcc_wl5, rcc_wba, rcc_u0))]
        if let Some(lse_sysen) = lse_sysen {
            ok &= reg.lsesysen() == lse_sysen;
        }
        #[cfg(not(any(rcc_f1, rcc_f1cl, rcc_f100, rcc_f2, rcc_f4, rcc_f410, rcc_l1)))]
        if let Some(lse_drv) = lse_drv {
            ok &= reg.lsedrv() == lse_drv.into();
        }

        // if configuration is OK, we're done.
        if ok {
            trace!("BDCR ok: {:08x}", bdcr().read().0);
            return rtc_clk;
        }

        // If not OK, reset backup domain and configure it.
        #[cfg(not(any(rcc_l0, rcc_l0_v2, rcc_l1, stm32h5, stm32h7rs, stm32c0)))]
        {
            bdcr().modify(|w| w.set_bdrst(true));
            bdcr().modify(|w| w.set_bdrst(false));
        }
        // H5 has a terrible, terrible errata: 'SRAM2 is erased when the backup domain is reset'
        // pending a more sane sane way to handle this, just don't reset BD for now.
        // This means the RTCSEL write below will have no effect, only if it has already been written
        // after last power-on. Since it's uncommon to dynamically change RTCSEL, this is better than
        // letting half our RAM go magically *poof*.
        // STM32H503CB/EB/KB/RB device errata - 2.2.8 SRAM2 unduly erased upon a backup domain reset
        // STM32H562xx/563xx/573xx device errata - 2.2.14 SRAM2 is erased when the backup domain is reset
        //#[cfg(any(stm32h5, stm32h7rs))]
        #[cfg(any(stm32h7rs))]
        {
            bdcr().modify(|w| w.set_vswrst(true));
            bdcr().modify(|w| w.set_vswrst(false));
        }
        #[cfg(any(stm32c0, stm32l0))]
        {
            bdcr().modify(|w| w.set_rtcrst(true));
            bdcr().modify(|w| w.set_rtcrst(false));
        }

        if lse_en {
            bdcr().modify(|w| {
                #[cfg(not(any(rcc_f1, rcc_f1cl, rcc_f100, rcc_f2, rcc_f4, rcc_f410, rcc_l1)))]
                if let Some(lse_drv) = lse_drv {
                    w.set_lsedrv(lse_drv.into());
                }
                w.set_lsebyp(lse_byp);
                w.set_lseon(true);
            });

            while !bdcr().read().lserdy() {}

            #[cfg(any(rcc_l5, rcc_u5, rcc_wle, rcc_wl5, rcc_wba, rcc_u0))]
            if let Some(lse_sysen) = lse_sysen {
                bdcr().modify(|w| {
                    w.set_lsesysen(lse_sysen);
                });

                if lse_sysen {
                    while !bdcr().read().lsesysrdy() {}
                }
            }
        }

        if self.rtc != RtcClockSource::DISABLE {
            bdcr().modify(|w| {
                #[cfg(any(rtc_v2h7, rtc_v2l4, rtc_v2wb, rtc_v3, rtc_v3u5))]
                assert!(!w.lsecsson(), "RTC is not compatible with LSE CSS, yet.");

                #[cfg(not(rcc_wba))]
                w.set_rtcen(true);
                w.set_rtcsel(self.rtc);
            });
        }

        trace!("BDCR configured: {:08x}", bdcr().read().0);

        compiler_fence(Ordering::SeqCst);

        rtc_clk
    }
}