embassy_stm32/timer/
simple_pwm.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
//! Simple PWM driver.

use core::marker::PhantomData;
use core::mem::ManuallyDrop;

use embassy_hal_internal::{into_ref, PeripheralRef};

use super::low_level::{CountingMode, OutputCompareMode, OutputPolarity, Timer};
use super::{Channel, Channel1Pin, Channel2Pin, Channel3Pin, Channel4Pin, GeneralInstance4Channel};
use crate::gpio::{AfType, AnyPin, OutputType, Speed};
use crate::time::Hertz;
use crate::Peripheral;

/// Channel 1 marker type.
pub enum Ch1 {}
/// Channel 2 marker type.
pub enum Ch2 {}
/// Channel 3 marker type.
pub enum Ch3 {}
/// Channel 4 marker type.
pub enum Ch4 {}

/// PWM pin wrapper.
///
/// This wraps a pin to make it usable with PWM.
pub struct PwmPin<'d, T, C> {
    _pin: PeripheralRef<'d, AnyPin>,
    phantom: PhantomData<(T, C)>,
}

macro_rules! channel_impl {
    ($new_chx:ident, $channel:ident, $pin_trait:ident) => {
        impl<'d, T: GeneralInstance4Channel> PwmPin<'d, T, $channel> {
            #[doc = concat!("Create a new ", stringify!($channel), " PWM pin instance.")]
            pub fn $new_chx(pin: impl Peripheral<P = impl $pin_trait<T>> + 'd, output_type: OutputType) -> Self {
                into_ref!(pin);
                critical_section::with(|_| {
                    pin.set_low();
                    pin.set_as_af(pin.af_num(), AfType::output(output_type, Speed::VeryHigh));
                });
                PwmPin {
                    _pin: pin.map_into(),
                    phantom: PhantomData,
                }
            }
        }
    };
}

channel_impl!(new_ch1, Ch1, Channel1Pin);
channel_impl!(new_ch2, Ch2, Channel2Pin);
channel_impl!(new_ch3, Ch3, Channel3Pin);
channel_impl!(new_ch4, Ch4, Channel4Pin);

/// A single channel of a pwm, obtained from [`SimplePwm::split`],
/// [`SimplePwm::channel`], [`SimplePwm::ch1`], etc.
///
/// It is not possible to change the pwm frequency because
/// the frequency configuration is shared with all four channels.
pub struct SimplePwmChannel<'d, T: GeneralInstance4Channel> {
    timer: ManuallyDrop<Timer<'d, T>>,
    channel: Channel,
}

// TODO: check for RMW races
impl<'d, T: GeneralInstance4Channel> SimplePwmChannel<'d, T> {
    /// Enable the given channel.
    pub fn enable(&mut self) {
        self.timer.enable_channel(self.channel, true);
    }

    /// Disable the given channel.
    pub fn disable(&mut self) {
        self.timer.enable_channel(self.channel, false);
    }

    /// Check whether given channel is enabled
    pub fn is_enabled(&self) -> bool {
        self.timer.get_channel_enable_state(self.channel)
    }

    /// Get max duty value.
    ///
    /// This value depends on the configured frequency and the timer's clock rate from RCC.
    pub fn max_duty_cycle(&self) -> u16 {
        let max = self.timer.get_max_compare_value();
        assert!(max < u16::MAX as u32);
        max as u16 + 1
    }

    /// Set the duty for a given channel.
    ///
    /// The value ranges from 0 for 0% duty, to [`max_duty_cycle`](Self::max_duty_cycle) for 100% duty, both included.
    pub fn set_duty_cycle(&mut self, duty: u16) {
        assert!(duty <= (*self).max_duty_cycle());
        self.timer.set_compare_value(self.channel, duty.into())
    }

    /// Set the duty cycle to 0%, or always inactive.
    pub fn set_duty_cycle_fully_off(&mut self) {
        self.set_duty_cycle(0);
    }

    /// Set the duty cycle to 100%, or always active.
    pub fn set_duty_cycle_fully_on(&mut self) {
        self.set_duty_cycle((*self).max_duty_cycle());
    }

    /// Set the duty cycle to `num / denom`.
    ///
    /// The caller is responsible for ensuring that `num` is less than or equal to `denom`,
    /// and that `denom` is not zero.
    pub fn set_duty_cycle_fraction(&mut self, num: u16, denom: u16) {
        assert!(denom != 0);
        assert!(num <= denom);
        let duty = u32::from(num) * u32::from(self.max_duty_cycle()) / u32::from(denom);

        // This is safe because we know that `num <= denom`, so `duty <= self.max_duty_cycle()` (u16)
        #[allow(clippy::cast_possible_truncation)]
        self.set_duty_cycle(duty as u16);
    }

    /// Set the duty cycle to `percent / 100`
    ///
    /// The caller is responsible for ensuring that `percent` is less than or equal to 100.
    pub fn set_duty_cycle_percent(&mut self, percent: u8) {
        self.set_duty_cycle_fraction(u16::from(percent), 100)
    }

    /// Get the duty for a given channel.
    ///
    /// The value ranges from 0 for 0% duty, to [`max_duty_cycle`](Self::max_duty_cycle) for 100% duty, both included.
    pub fn current_duty_cycle(&self) -> u16 {
        unwrap!(self.timer.get_compare_value(self.channel).try_into())
    }

    /// Set the output polarity for a given channel.
    pub fn set_polarity(&mut self, polarity: OutputPolarity) {
        self.timer.set_output_polarity(self.channel, polarity);
    }

    /// Set the output compare mode for a given channel.
    pub fn set_output_compare_mode(&mut self, mode: OutputCompareMode) {
        self.timer.set_output_compare_mode(self.channel, mode);
    }
}

/// A group of four [`SimplePwmChannel`]s, obtained from [`SimplePwm::split`].
pub struct SimplePwmChannels<'d, T: GeneralInstance4Channel> {
    /// Channel 1
    pub ch1: SimplePwmChannel<'d, T>,
    /// Channel 2
    pub ch2: SimplePwmChannel<'d, T>,
    /// Channel 3
    pub ch3: SimplePwmChannel<'d, T>,
    /// Channel 4
    pub ch4: SimplePwmChannel<'d, T>,
}

/// Simple PWM driver.
pub struct SimplePwm<'d, T: GeneralInstance4Channel> {
    inner: Timer<'d, T>,
}

impl<'d, T: GeneralInstance4Channel> SimplePwm<'d, T> {
    /// Create a new simple PWM driver.
    pub fn new(
        tim: impl Peripheral<P = T> + 'd,
        _ch1: Option<PwmPin<'d, T, Ch1>>,
        _ch2: Option<PwmPin<'d, T, Ch2>>,
        _ch3: Option<PwmPin<'d, T, Ch3>>,
        _ch4: Option<PwmPin<'d, T, Ch4>>,
        freq: Hertz,
        counting_mode: CountingMode,
    ) -> Self {
        Self::new_inner(tim, freq, counting_mode)
    }

    fn new_inner(tim: impl Peripheral<P = T> + 'd, freq: Hertz, counting_mode: CountingMode) -> Self {
        let mut this = Self { inner: Timer::new(tim) };

        this.inner.set_counting_mode(counting_mode);
        this.set_frequency(freq);
        this.inner.enable_outputs(); // Required for advanced timers, see GeneralInstance4Channel for details
        this.inner.start();

        [Channel::Ch1, Channel::Ch2, Channel::Ch3, Channel::Ch4]
            .iter()
            .for_each(|&channel| {
                this.inner.set_output_compare_mode(channel, OutputCompareMode::PwmMode1);

                this.inner.set_output_compare_preload(channel, true);
            });

        this
    }

    /// Get a single channel
    ///
    /// If you need to use multiple channels, use [`Self::split`].
    pub fn channel(&mut self, channel: Channel) -> SimplePwmChannel<'_, T> {
        SimplePwmChannel {
            timer: unsafe { self.inner.clone_unchecked() },
            channel,
        }
    }

    /// Channel 1
    ///
    /// This is just a convenience wrapper around [`Self::channel`].
    ///
    /// If you need to use multiple channels, use [`Self::split`].
    pub fn ch1(&mut self) -> SimplePwmChannel<'_, T> {
        self.channel(Channel::Ch1)
    }

    /// Channel 2
    ///
    /// This is just a convenience wrapper around [`Self::channel`].
    ///
    /// If you need to use multiple channels, use [`Self::split`].
    pub fn ch2(&mut self) -> SimplePwmChannel<'_, T> {
        self.channel(Channel::Ch2)
    }

    /// Channel 3
    ///
    /// This is just a convenience wrapper around [`Self::channel`].
    ///
    /// If you need to use multiple channels, use [`Self::split`].
    pub fn ch3(&mut self) -> SimplePwmChannel<'_, T> {
        self.channel(Channel::Ch3)
    }

    /// Channel 4
    ///
    /// This is just a convenience wrapper around [`Self::channel`].
    ///
    /// If you need to use multiple channels, use [`Self::split`].
    pub fn ch4(&mut self) -> SimplePwmChannel<'_, T> {
        self.channel(Channel::Ch4)
    }

    /// Splits a [`SimplePwm`] into four pwm channels.
    ///
    /// This returns all four channels, including channels that
    /// aren't configured with a [`PwmPin`].
    // TODO: I hate the name "split"
    pub fn split(self) -> SimplePwmChannels<'static, T>
    where
        // must be static because the timer will never be dropped/disabled
        'd: 'static,
    {
        // without this, the timer would be disabled at the end of this function
        let timer = ManuallyDrop::new(self.inner);

        let ch = |channel| SimplePwmChannel {
            timer: unsafe { timer.clone_unchecked() },
            channel,
        };

        SimplePwmChannels {
            ch1: ch(Channel::Ch1),
            ch2: ch(Channel::Ch2),
            ch3: ch(Channel::Ch3),
            ch4: ch(Channel::Ch4),
        }
    }

    /// Set PWM frequency.
    ///
    /// Note: when you call this, the max duty value changes, so you will have to
    /// call `set_duty` on all channels with the duty calculated based on the new max duty.
    pub fn set_frequency(&mut self, freq: Hertz) {
        // TODO: prevent ARR = u16::MAX?
        let multiplier = if self.inner.get_counting_mode().is_center_aligned() {
            2u8
        } else {
            1u8
        };
        self.inner.set_frequency_internal(freq * multiplier, 16);
    }

    /// Get max duty value.
    ///
    /// This value depends on the configured frequency and the timer's clock rate from RCC.
    pub fn max_duty_cycle(&self) -> u16 {
        let max = self.inner.get_max_compare_value();
        assert!(max < u16::MAX as u32);
        max as u16 + 1
    }

    /// Generate a sequence of PWM waveform
    ///
    /// Note:
    /// you will need to provide corresponding TIMx_UP DMA channel to use this method.
    pub async fn waveform_up(
        &mut self,
        dma: impl Peripheral<P = impl super::UpDma<T>>,
        channel: Channel,
        duty: &[u16],
    ) {
        into_ref!(dma);

        #[allow(clippy::let_unit_value)] // eg. stm32f334
        let req = dma.request();

        let original_duty_state = self.channel(channel).current_duty_cycle();
        let original_enable_state = self.channel(channel).is_enabled();
        let original_update_dma_state = self.inner.get_update_dma_state();

        if !original_update_dma_state {
            self.inner.enable_update_dma(true);
        }

        if !original_enable_state {
            self.channel(channel).enable();
        }

        unsafe {
            #[cfg(not(any(bdma, gpdma)))]
            use crate::dma::{Burst, FifoThreshold};
            use crate::dma::{Transfer, TransferOptions};

            let dma_transfer_option = TransferOptions {
                #[cfg(not(any(bdma, gpdma)))]
                fifo_threshold: Some(FifoThreshold::Full),
                #[cfg(not(any(bdma, gpdma)))]
                mburst: Burst::Incr8,
                ..Default::default()
            };

            Transfer::new_write(
                &mut dma,
                req,
                duty,
                self.inner.regs_1ch().ccr(channel.index()).as_ptr() as *mut _,
                dma_transfer_option,
            )
            .await
        };

        // restore output compare state
        if !original_enable_state {
            self.channel(channel).disable();
        }

        self.channel(channel).set_duty_cycle(original_duty_state);

        // Since DMA is closed before timer update event trigger DMA is turn off,
        // this can almost always trigger a DMA FIFO error.
        //
        // optional TODO:
        // clean FEIF after disable UDE
        if !original_update_dma_state {
            self.inner.enable_update_dma(false);
        }
    }
}

macro_rules! impl_waveform_chx {
    ($fn_name:ident, $dma_ch:ident, $cc_ch:ident) => {
        impl<'d, T: GeneralInstance4Channel> SimplePwm<'d, T> {
            /// Generate a sequence of PWM waveform
            ///
            /// Note:
            /// you will need to provide corresponding TIMx_CHy DMA channel to use this method.
            pub async fn $fn_name(&mut self, dma: impl Peripheral<P = impl super::$dma_ch<T>>, duty: &[u16]) {
                use crate::pac::timer::vals::Ccds;

                into_ref!(dma);

                #[allow(clippy::let_unit_value)] // eg. stm32f334
                let req = dma.request();

                let cc_channel = Channel::$cc_ch;

                let original_duty_state = self.channel(cc_channel).current_duty_cycle();
                let original_enable_state = self.channel(cc_channel).is_enabled();
                let original_cc_dma_on_update = self.inner.get_cc_dma_selection() == Ccds::ON_UPDATE;
                let original_cc_dma_enabled = self.inner.get_cc_dma_enable_state(cc_channel);

                // redirect CC DMA request onto Update Event
                if !original_cc_dma_on_update {
                    self.inner.set_cc_dma_selection(Ccds::ON_UPDATE)
                }

                if !original_cc_dma_enabled {
                    self.inner.set_cc_dma_enable_state(cc_channel, true);
                }

                if !original_enable_state {
                    self.channel(cc_channel).enable();
                }

                unsafe {
                    #[cfg(not(any(bdma, gpdma)))]
                    use crate::dma::{Burst, FifoThreshold};
                    use crate::dma::{Transfer, TransferOptions};

                    let dma_transfer_option = TransferOptions {
                        #[cfg(not(any(bdma, gpdma)))]
                        fifo_threshold: Some(FifoThreshold::Full),
                        #[cfg(not(any(bdma, gpdma)))]
                        mburst: Burst::Incr8,
                        ..Default::default()
                    };

                    Transfer::new_write(
                        &mut dma,
                        req,
                        duty,
                        self.inner.regs_gp16().ccr(cc_channel.index()).as_ptr() as *mut _,
                        dma_transfer_option,
                    )
                    .await
                };

                // restore output compare state
                if !original_enable_state {
                    self.channel(cc_channel).disable();
                }

                self.channel(cc_channel).set_duty_cycle(original_duty_state);

                // Since DMA is closed before timer Capture Compare Event trigger DMA is turn off,
                // this can almost always trigger a DMA FIFO error.
                //
                // optional TODO:
                // clean FEIF after disable UDE
                if !original_cc_dma_enabled {
                    self.inner.set_cc_dma_enable_state(cc_channel, false);
                }

                if !original_cc_dma_on_update {
                    self.inner.set_cc_dma_selection(Ccds::ON_COMPARE)
                }
            }
        }
    };
}

impl_waveform_chx!(waveform_ch1, Ch1Dma, Ch1);
impl_waveform_chx!(waveform_ch2, Ch2Dma, Ch2);
impl_waveform_chx!(waveform_ch3, Ch3Dma, Ch3);
impl_waveform_chx!(waveform_ch4, Ch4Dma, Ch4);

impl<'d, T: GeneralInstance4Channel> embedded_hal_1::pwm::ErrorType for SimplePwmChannel<'d, T> {
    type Error = core::convert::Infallible;
}

impl<'d, T: GeneralInstance4Channel> embedded_hal_1::pwm::SetDutyCycle for SimplePwmChannel<'d, T> {
    fn max_duty_cycle(&self) -> u16 {
        self.max_duty_cycle()
    }

    fn set_duty_cycle(&mut self, duty: u16) -> Result<(), Self::Error> {
        self.set_duty_cycle(duty);
        Ok(())
    }

    fn set_duty_cycle_fully_off(&mut self) -> Result<(), Self::Error> {
        self.set_duty_cycle_fully_off();
        Ok(())
    }

    fn set_duty_cycle_fully_on(&mut self) -> Result<(), Self::Error> {
        self.set_duty_cycle_fully_on();
        Ok(())
    }

    fn set_duty_cycle_fraction(&mut self, num: u16, denom: u16) -> Result<(), Self::Error> {
        self.set_duty_cycle_fraction(num, denom);
        Ok(())
    }

    fn set_duty_cycle_percent(&mut self, percent: u8) -> Result<(), Self::Error> {
        self.set_duty_cycle_percent(percent);
        Ok(())
    }
}

impl<'d, T: GeneralInstance4Channel> embedded_hal_02::Pwm for SimplePwm<'d, T> {
    type Channel = Channel;
    type Time = Hertz;
    type Duty = u32;

    fn disable(&mut self, channel: Self::Channel) {
        self.inner.enable_channel(channel, false);
    }

    fn enable(&mut self, channel: Self::Channel) {
        self.inner.enable_channel(channel, true);
    }

    fn get_period(&self) -> Self::Time {
        self.inner.get_frequency()
    }

    fn get_duty(&self, channel: Self::Channel) -> Self::Duty {
        self.inner.get_compare_value(channel)
    }

    fn get_max_duty(&self) -> Self::Duty {
        self.inner.get_max_compare_value() + 1
    }

    fn set_duty(&mut self, channel: Self::Channel, duty: Self::Duty) {
        assert!(duty <= self.max_duty_cycle() as u32);
        self.inner.set_compare_value(channel, duty)
    }

    fn set_period<P>(&mut self, period: P)
    where
        P: Into<Self::Time>,
    {
        self.inner.set_frequency(period.into());
    }
}