#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
use core::cmp::min;
use core::marker::PhantomData;
use core::ptr;
use embassy_hal_internal::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
use crate::dma::{NoDma, Transfer, TransferOptions};
use crate::interrupt::typelevel::Interrupt;
use crate::{interrupt, pac, peripherals, rcc, Peripheral};
const DES_BLOCK_SIZE: usize = 8; const AES_BLOCK_SIZE: usize = 16; static CRYP_WAKER: AtomicWaker = AtomicWaker::new();
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let bits = T::regs().misr().read();
if bits.inmis() {
T::regs().imscr().modify(|w| w.set_inim(false));
CRYP_WAKER.wake();
}
if bits.outmis() {
T::regs().imscr().modify(|w| w.set_outim(false));
CRYP_WAKER.wake();
}
}
}
pub trait Cipher<'c> {
const BLOCK_SIZE: usize;
const REQUIRES_PADDING: bool = false;
fn key(&self) -> &[u8];
fn iv(&self) -> &[u8];
fn set_algomode(&self, p: pac::cryp::Cryp);
fn prepare_key(&self, _p: pac::cryp::Cryp) {}
fn init_phase_blocking<T: Instance, DmaIn, DmaOut>(&self, _p: pac::cryp::Cryp, _cryp: &Cryp<T, DmaIn, DmaOut>) {}
async fn init_phase<T: Instance, DmaIn, DmaOut>(&self, _p: pac::cryp::Cryp, _cryp: &mut Cryp<'_, T, DmaIn, DmaOut>)
where
DmaIn: crate::cryp::DmaIn<T>,
DmaOut: crate::cryp::DmaOut<T>,
{
}
fn pre_final(&self, _p: pac::cryp::Cryp, _dir: Direction, _padding_len: usize) -> [u32; 4] {
return [0; 4];
}
fn post_final_blocking<T: Instance, DmaIn, DmaOut>(
&self,
_p: pac::cryp::Cryp,
_cryp: &Cryp<T, DmaIn, DmaOut>,
_dir: Direction,
_int_data: &mut [u8; AES_BLOCK_SIZE],
_temp1: [u32; 4],
_padding_mask: [u8; 16],
) {
}
async fn post_final<T: Instance, DmaIn, DmaOut>(
&self,
_p: pac::cryp::Cryp,
_cryp: &mut Cryp<'_, T, DmaIn, DmaOut>,
_dir: Direction,
_int_data: &mut [u8; AES_BLOCK_SIZE],
_temp1: [u32; 4],
_padding_mask: [u8; 16],
) where
DmaIn: crate::cryp::DmaIn<T>,
DmaOut: crate::cryp::DmaOut<T>,
{
}
fn get_header_block(&self) -> &[u8] {
return [0; 0].as_slice();
}
}
pub trait CipherSized {}
pub trait IVSized {}
pub trait CipherAuthenticated<const TAG_SIZE: usize> {
const TAG_SIZE: usize = TAG_SIZE;
}
pub struct TdesEcb<'c, const KEY_SIZE: usize> {
iv: &'c [u8; 0],
key: &'c [u8; KEY_SIZE],
}
impl<'c, const KEY_SIZE: usize> TdesEcb<'c, KEY_SIZE> {
pub fn new(key: &'c [u8; KEY_SIZE]) -> Self {
return Self { key: key, iv: &[0; 0] };
}
}
impl<'c, const KEY_SIZE: usize> Cipher<'c> for TdesEcb<'c, KEY_SIZE> {
const BLOCK_SIZE: usize = DES_BLOCK_SIZE;
const REQUIRES_PADDING: bool = true;
fn key(&self) -> &'c [u8] {
self.key
}
fn iv(&self) -> &'c [u8] {
self.iv
}
fn set_algomode(&self, p: pac::cryp::Cryp) {
#[cfg(cryp_v1)]
{
p.cr().modify(|w| w.set_algomode(0));
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
{
p.cr().modify(|w| w.set_algomode0(0));
p.cr().modify(|w| w.set_algomode3(false));
}
}
}
impl<'c> CipherSized for TdesEcb<'c, { 112 / 8 }> {}
impl<'c> CipherSized for TdesEcb<'c, { 168 / 8 }> {}
impl<'c, const KEY_SIZE: usize> IVSized for TdesEcb<'c, KEY_SIZE> {}
pub struct TdesCbc<'c, const KEY_SIZE: usize> {
iv: &'c [u8; 8],
key: &'c [u8; KEY_SIZE],
}
impl<'c, const KEY_SIZE: usize> TdesCbc<'c, KEY_SIZE> {
pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 8]) -> Self {
return Self { key: key, iv: iv };
}
}
impl<'c, const KEY_SIZE: usize> Cipher<'c> for TdesCbc<'c, KEY_SIZE> {
const BLOCK_SIZE: usize = DES_BLOCK_SIZE;
const REQUIRES_PADDING: bool = true;
fn key(&self) -> &'c [u8] {
self.key
}
fn iv(&self) -> &'c [u8] {
self.iv
}
fn set_algomode(&self, p: pac::cryp::Cryp) {
#[cfg(cryp_v1)]
{
p.cr().modify(|w| w.set_algomode(1));
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
{
p.cr().modify(|w| w.set_algomode0(1));
p.cr().modify(|w| w.set_algomode3(false));
}
}
}
impl<'c> CipherSized for TdesCbc<'c, { 112 / 8 }> {}
impl<'c> CipherSized for TdesCbc<'c, { 168 / 8 }> {}
impl<'c, const KEY_SIZE: usize> IVSized for TdesCbc<'c, KEY_SIZE> {}
pub struct DesEcb<'c, const KEY_SIZE: usize> {
iv: &'c [u8; 0],
key: &'c [u8; KEY_SIZE],
}
impl<'c, const KEY_SIZE: usize> DesEcb<'c, KEY_SIZE> {
pub fn new(key: &'c [u8; KEY_SIZE]) -> Self {
return Self { key: key, iv: &[0; 0] };
}
}
impl<'c, const KEY_SIZE: usize> Cipher<'c> for DesEcb<'c, KEY_SIZE> {
const BLOCK_SIZE: usize = DES_BLOCK_SIZE;
const REQUIRES_PADDING: bool = true;
fn key(&self) -> &'c [u8] {
self.key
}
fn iv(&self) -> &'c [u8] {
self.iv
}
fn set_algomode(&self, p: pac::cryp::Cryp) {
#[cfg(cryp_v1)]
{
p.cr().modify(|w| w.set_algomode(2));
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
{
p.cr().modify(|w| w.set_algomode0(2));
p.cr().modify(|w| w.set_algomode3(false));
}
}
}
impl<'c> CipherSized for DesEcb<'c, { 56 / 8 }> {}
impl<'c, const KEY_SIZE: usize> IVSized for DesEcb<'c, KEY_SIZE> {}
pub struct DesCbc<'c, const KEY_SIZE: usize> {
iv: &'c [u8; 8],
key: &'c [u8; KEY_SIZE],
}
impl<'c, const KEY_SIZE: usize> DesCbc<'c, KEY_SIZE> {
pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 8]) -> Self {
return Self { key: key, iv: iv };
}
}
impl<'c, const KEY_SIZE: usize> Cipher<'c> for DesCbc<'c, KEY_SIZE> {
const BLOCK_SIZE: usize = DES_BLOCK_SIZE;
const REQUIRES_PADDING: bool = true;
fn key(&self) -> &'c [u8] {
self.key
}
fn iv(&self) -> &'c [u8] {
self.iv
}
fn set_algomode(&self, p: pac::cryp::Cryp) {
#[cfg(cryp_v1)]
{
p.cr().modify(|w| w.set_algomode(3));
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
{
p.cr().modify(|w| w.set_algomode0(3));
p.cr().modify(|w| w.set_algomode3(false));
}
}
}
impl<'c> CipherSized for DesCbc<'c, { 56 / 8 }> {}
impl<'c, const KEY_SIZE: usize> IVSized for DesCbc<'c, KEY_SIZE> {}
pub struct AesEcb<'c, const KEY_SIZE: usize> {
iv: &'c [u8; 0],
key: &'c [u8; KEY_SIZE],
}
impl<'c, const KEY_SIZE: usize> AesEcb<'c, KEY_SIZE> {
pub fn new(key: &'c [u8; KEY_SIZE]) -> Self {
return Self { key: key, iv: &[0; 0] };
}
}
impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesEcb<'c, KEY_SIZE> {
const BLOCK_SIZE: usize = AES_BLOCK_SIZE;
const REQUIRES_PADDING: bool = true;
fn key(&self) -> &'c [u8] {
self.key
}
fn iv(&self) -> &'c [u8] {
self.iv
}
fn prepare_key(&self, p: pac::cryp::Cryp) {
#[cfg(cryp_v1)]
{
p.cr().modify(|w| w.set_algomode(7));
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
{
p.cr().modify(|w| w.set_algomode0(7));
p.cr().modify(|w| w.set_algomode3(false));
}
p.cr().modify(|w| w.set_crypen(true));
while p.sr().read().busy() {}
}
fn set_algomode(&self, p: pac::cryp::Cryp) {
#[cfg(cryp_v1)]
{
p.cr().modify(|w| w.set_algomode(2));
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
{
p.cr().modify(|w| w.set_algomode0(2));
p.cr().modify(|w| w.set_algomode3(false));
}
}
}
impl<'c> CipherSized for AesEcb<'c, { 128 / 8 }> {}
impl<'c> CipherSized for AesEcb<'c, { 192 / 8 }> {}
impl<'c> CipherSized for AesEcb<'c, { 256 / 8 }> {}
impl<'c, const KEY_SIZE: usize> IVSized for AesEcb<'c, KEY_SIZE> {}
pub struct AesCbc<'c, const KEY_SIZE: usize> {
iv: &'c [u8; 16],
key: &'c [u8; KEY_SIZE],
}
impl<'c, const KEY_SIZE: usize> AesCbc<'c, KEY_SIZE> {
pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 16]) -> Self {
return Self { key: key, iv: iv };
}
}
impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesCbc<'c, KEY_SIZE> {
const BLOCK_SIZE: usize = AES_BLOCK_SIZE;
const REQUIRES_PADDING: bool = true;
fn key(&self) -> &'c [u8] {
self.key
}
fn iv(&self) -> &'c [u8] {
self.iv
}
fn prepare_key(&self, p: pac::cryp::Cryp) {
#[cfg(cryp_v1)]
{
p.cr().modify(|w| w.set_algomode(7));
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
{
p.cr().modify(|w| w.set_algomode0(7));
p.cr().modify(|w| w.set_algomode3(false));
}
p.cr().modify(|w| w.set_crypen(true));
while p.sr().read().busy() {}
}
fn set_algomode(&self, p: pac::cryp::Cryp) {
#[cfg(cryp_v1)]
{
p.cr().modify(|w| w.set_algomode(5));
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
{
p.cr().modify(|w| w.set_algomode0(5));
p.cr().modify(|w| w.set_algomode3(false));
}
}
}
impl<'c> CipherSized for AesCbc<'c, { 128 / 8 }> {}
impl<'c> CipherSized for AesCbc<'c, { 192 / 8 }> {}
impl<'c> CipherSized for AesCbc<'c, { 256 / 8 }> {}
impl<'c, const KEY_SIZE: usize> IVSized for AesCbc<'c, KEY_SIZE> {}
pub struct AesCtr<'c, const KEY_SIZE: usize> {
iv: &'c [u8; 16],
key: &'c [u8; KEY_SIZE],
}
impl<'c, const KEY_SIZE: usize> AesCtr<'c, KEY_SIZE> {
pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 16]) -> Self {
return Self { key: key, iv: iv };
}
}
impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesCtr<'c, KEY_SIZE> {
const BLOCK_SIZE: usize = AES_BLOCK_SIZE;
fn key(&self) -> &'c [u8] {
self.key
}
fn iv(&self) -> &'c [u8] {
self.iv
}
fn set_algomode(&self, p: pac::cryp::Cryp) {
#[cfg(cryp_v1)]
{
p.cr().modify(|w| w.set_algomode(6));
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
{
p.cr().modify(|w| w.set_algomode0(6));
p.cr().modify(|w| w.set_algomode3(false));
}
}
}
impl<'c> CipherSized for AesCtr<'c, { 128 / 8 }> {}
impl<'c> CipherSized for AesCtr<'c, { 192 / 8 }> {}
impl<'c> CipherSized for AesCtr<'c, { 256 / 8 }> {}
impl<'c, const KEY_SIZE: usize> IVSized for AesCtr<'c, KEY_SIZE> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
pub struct AesGcm<'c, const KEY_SIZE: usize> {
iv: [u8; 16],
key: &'c [u8; KEY_SIZE],
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize> AesGcm<'c, KEY_SIZE> {
pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 12]) -> Self {
let mut new_gcm = Self { key: key, iv: [0; 16] };
new_gcm.iv[..12].copy_from_slice(iv);
new_gcm.iv[15] = 2;
new_gcm
}
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesGcm<'c, KEY_SIZE> {
const BLOCK_SIZE: usize = AES_BLOCK_SIZE;
fn key(&self) -> &'c [u8] {
self.key
}
fn iv(&self) -> &[u8] {
self.iv.as_slice()
}
fn set_algomode(&self, p: pac::cryp::Cryp) {
p.cr().modify(|w| w.set_algomode0(0));
p.cr().modify(|w| w.set_algomode3(true));
}
fn init_phase_blocking<T: Instance, DmaIn, DmaOut>(&self, p: pac::cryp::Cryp, _cryp: &Cryp<T, DmaIn, DmaOut>) {
p.cr().modify(|w| w.set_gcm_ccmph(0));
p.cr().modify(|w| w.set_crypen(true));
while p.cr().read().crypen() {}
}
async fn init_phase<T: Instance, DmaIn, DmaOut>(&self, p: pac::cryp::Cryp, _cryp: &mut Cryp<'_, T, DmaIn, DmaOut>) {
p.cr().modify(|w| w.set_gcm_ccmph(0));
p.cr().modify(|w| w.set_crypen(true));
while p.cr().read().crypen() {}
}
#[cfg(cryp_v2)]
fn pre_final(&self, p: pac::cryp::Cryp, dir: Direction, _padding_len: usize) -> [u32; 4] {
if dir == Direction::Encrypt {
p.cr().modify(|w| w.set_crypen(false));
p.cr().modify(|w| w.set_algomode3(false));
p.cr().modify(|w| w.set_algomode0(6));
let iv1r = p.csgcmccmr(7).read() - 1;
p.init(1).ivrr().write_value(iv1r);
p.cr().modify(|w| w.set_crypen(true));
}
[0; 4]
}
#[cfg(any(cryp_v3, cryp_v4))]
fn pre_final(&self, p: pac::cryp::Cryp, _dir: Direction, padding_len: usize) -> [u32; 4] {
p.cr().modify(|w| w.set_npblb(padding_len as u8));
[0; 4]
}
#[cfg(cryp_v2)]
fn post_final_blocking<T: Instance, DmaIn, DmaOut>(
&self,
p: pac::cryp::Cryp,
cryp: &Cryp<T, DmaIn, DmaOut>,
dir: Direction,
int_data: &mut [u8; AES_BLOCK_SIZE],
_temp1: [u32; 4],
padding_mask: [u8; AES_BLOCK_SIZE],
) {
if dir == Direction::Encrypt {
p.cr().modify(|w| w.set_crypen(false));
p.cr().modify(|w| w.set_algomode3(true));
p.cr().modify(|w| w.set_algomode0(0));
for i in 0..AES_BLOCK_SIZE {
int_data[i] = int_data[i] & padding_mask[i];
}
p.cr().modify(|w| w.set_crypen(true));
p.cr().modify(|w| w.set_gcm_ccmph(3));
cryp.write_bytes_blocking(Self::BLOCK_SIZE, int_data);
cryp.read_bytes_blocking(Self::BLOCK_SIZE, int_data);
}
}
#[cfg(cryp_v2)]
async fn post_final<T: Instance, DmaIn, DmaOut>(
&self,
p: pac::cryp::Cryp,
cryp: &mut Cryp<'_, T, DmaIn, DmaOut>,
dir: Direction,
int_data: &mut [u8; AES_BLOCK_SIZE],
_temp1: [u32; 4],
padding_mask: [u8; AES_BLOCK_SIZE],
) where
DmaIn: crate::cryp::DmaIn<T>,
DmaOut: crate::cryp::DmaOut<T>,
{
if dir == Direction::Encrypt {
p.cr().modify(|w| w.set_crypen(false));
p.cr().modify(|w| w.set_algomode3(true));
p.cr().modify(|w| w.set_algomode0(0));
for i in 0..AES_BLOCK_SIZE {
int_data[i] = int_data[i] & padding_mask[i];
}
p.cr().modify(|w| w.set_crypen(true));
p.cr().modify(|w| w.set_gcm_ccmph(3));
let mut out_data: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
let read = Cryp::<T, DmaIn, DmaOut>::read_bytes(&mut cryp.outdma, Self::BLOCK_SIZE, &mut out_data);
let write = Cryp::<T, DmaIn, DmaOut>::write_bytes(&mut cryp.indma, Self::BLOCK_SIZE, int_data);
embassy_futures::join::join(read, write).await;
int_data.copy_from_slice(&out_data);
}
}
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c> CipherSized for AesGcm<'c, { 128 / 8 }> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c> CipherSized for AesGcm<'c, { 192 / 8 }> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c> CipherSized for AesGcm<'c, { 256 / 8 }> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize> CipherAuthenticated<16> for AesGcm<'c, KEY_SIZE> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize> IVSized for AesGcm<'c, KEY_SIZE> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
pub struct AesGmac<'c, const KEY_SIZE: usize> {
iv: [u8; 16],
key: &'c [u8; KEY_SIZE],
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize> AesGmac<'c, KEY_SIZE> {
pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 12]) -> Self {
let mut new_gmac = Self { key: key, iv: [0; 16] };
new_gmac.iv[..12].copy_from_slice(iv);
new_gmac.iv[15] = 2;
new_gmac
}
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesGmac<'c, KEY_SIZE> {
const BLOCK_SIZE: usize = AES_BLOCK_SIZE;
fn key(&self) -> &'c [u8] {
self.key
}
fn iv(&self) -> &[u8] {
self.iv.as_slice()
}
fn set_algomode(&self, p: pac::cryp::Cryp) {
p.cr().modify(|w| w.set_algomode0(0));
p.cr().modify(|w| w.set_algomode3(true));
}
fn init_phase_blocking<T: Instance, DmaIn, DmaOut>(&self, p: pac::cryp::Cryp, _cryp: &Cryp<T, DmaIn, DmaOut>) {
p.cr().modify(|w| w.set_gcm_ccmph(0));
p.cr().modify(|w| w.set_crypen(true));
while p.cr().read().crypen() {}
}
async fn init_phase<T: Instance, DmaIn, DmaOut>(&self, p: pac::cryp::Cryp, _cryp: &mut Cryp<'_, T, DmaIn, DmaOut>) {
p.cr().modify(|w| w.set_gcm_ccmph(0));
p.cr().modify(|w| w.set_crypen(true));
while p.cr().read().crypen() {}
}
#[cfg(cryp_v2)]
fn pre_final(&self, p: pac::cryp::Cryp, dir: Direction, _padding_len: usize) -> [u32; 4] {
if dir == Direction::Encrypt {
p.cr().modify(|w| w.set_crypen(false));
p.cr().modify(|w| w.set_algomode3(false));
p.cr().modify(|w| w.set_algomode0(6));
let iv1r = p.csgcmccmr(7).read() - 1;
p.init(1).ivrr().write_value(iv1r);
p.cr().modify(|w| w.set_crypen(true));
}
[0; 4]
}
#[cfg(any(cryp_v3, cryp_v4))]
fn pre_final(&self, p: pac::cryp::Cryp, _dir: Direction, padding_len: usize) -> [u32; 4] {
p.cr().modify(|w| w.set_npblb(padding_len as u8));
[0; 4]
}
#[cfg(cryp_v2)]
fn post_final_blocking<T: Instance, DmaIn, DmaOut>(
&self,
p: pac::cryp::Cryp,
cryp: &Cryp<T, DmaIn, DmaOut>,
dir: Direction,
int_data: &mut [u8; AES_BLOCK_SIZE],
_temp1: [u32; 4],
padding_mask: [u8; AES_BLOCK_SIZE],
) {
if dir == Direction::Encrypt {
p.cr().modify(|w| w.set_crypen(false));
p.cr().modify(|w| w.set_algomode3(true));
p.cr().modify(|w| w.set_algomode0(0));
for i in 0..AES_BLOCK_SIZE {
int_data[i] = int_data[i] & padding_mask[i];
}
p.cr().modify(|w| w.set_crypen(true));
p.cr().modify(|w| w.set_gcm_ccmph(3));
cryp.write_bytes_blocking(Self::BLOCK_SIZE, int_data);
cryp.read_bytes_blocking(Self::BLOCK_SIZE, int_data);
}
}
#[cfg(cryp_v2)]
async fn post_final<T: Instance, DmaIn, DmaOut>(
&self,
p: pac::cryp::Cryp,
cryp: &mut Cryp<'_, T, DmaIn, DmaOut>,
dir: Direction,
int_data: &mut [u8; AES_BLOCK_SIZE],
_temp1: [u32; 4],
padding_mask: [u8; AES_BLOCK_SIZE],
) where
DmaIn: crate::cryp::DmaIn<T>,
DmaOut: crate::cryp::DmaOut<T>,
{
if dir == Direction::Encrypt {
p.cr().modify(|w| w.set_crypen(false));
p.cr().modify(|w| w.set_algomode3(true));
p.cr().modify(|w| w.set_algomode0(0));
for i in 0..AES_BLOCK_SIZE {
int_data[i] = int_data[i] & padding_mask[i];
}
p.cr().modify(|w| w.set_crypen(true));
p.cr().modify(|w| w.set_gcm_ccmph(3));
let mut out_data: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
let read = Cryp::<T, DmaIn, DmaOut>::read_bytes(&mut cryp.outdma, Self::BLOCK_SIZE, &mut out_data);
let write = Cryp::<T, DmaIn, DmaOut>::write_bytes(&mut cryp.indma, Self::BLOCK_SIZE, int_data);
embassy_futures::join::join(read, write).await;
}
}
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c> CipherSized for AesGmac<'c, { 128 / 8 }> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c> CipherSized for AesGmac<'c, { 192 / 8 }> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c> CipherSized for AesGmac<'c, { 256 / 8 }> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize> CipherAuthenticated<16> for AesGmac<'c, KEY_SIZE> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize> IVSized for AesGmac<'c, KEY_SIZE> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
pub struct AesCcm<'c, const KEY_SIZE: usize, const TAG_SIZE: usize, const IV_SIZE: usize> {
key: &'c [u8; KEY_SIZE],
aad_header: [u8; 6],
aad_header_len: usize,
block0: [u8; 16],
ctr: [u8; 16],
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize, const IV_SIZE: usize> AesCcm<'c, KEY_SIZE, TAG_SIZE, IV_SIZE> {
pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; IV_SIZE], aad_len: usize, payload_len: usize) -> Self {
let mut aad_header: [u8; 6] = [0; 6];
let mut aad_header_len = 0;
let mut block0: [u8; 16] = [0; 16];
if aad_len != 0 {
if aad_len < 65280 {
aad_header[0] = (aad_len >> 8) as u8 & 0xFF;
aad_header[1] = aad_len as u8 & 0xFF;
aad_header_len = 2;
} else {
aad_header[0] = 0xFF;
aad_header[1] = 0xFE;
let aad_len_bytes: [u8; 4] = (aad_len as u32).to_be_bytes();
aad_header[2] = aad_len_bytes[0];
aad_header[3] = aad_len_bytes[1];
aad_header[4] = aad_len_bytes[2];
aad_header[5] = aad_len_bytes[3];
aad_header_len = 6;
}
}
let total_aad_len = aad_header_len + aad_len;
let mut aad_padding_len = 16 - (total_aad_len % 16);
if aad_padding_len == 16 {
aad_padding_len = 0;
}
aad_header_len += aad_padding_len;
let total_aad_len_padded = aad_header_len + aad_len;
if total_aad_len_padded > 0 {
block0[0] = 0x40;
}
block0[0] |= ((((TAG_SIZE as u8) - 2) >> 1) & 0x07) << 3;
block0[0] |= ((15 - (iv.len() as u8)) - 1) & 0x07;
block0[1..1 + iv.len()].copy_from_slice(iv);
let payload_len_bytes: [u8; 4] = (payload_len as u32).to_be_bytes();
if iv.len() <= 11 {
block0[12] = payload_len_bytes[0];
} else if payload_len_bytes[0] > 0 {
panic!("Message is too large for given IV size.");
}
if iv.len() <= 12 {
block0[13] = payload_len_bytes[1];
} else if payload_len_bytes[1] > 0 {
panic!("Message is too large for given IV size.");
}
block0[14] = payload_len_bytes[2];
block0[15] = payload_len_bytes[3];
let mut ctr: [u8; 16] = [0; 16];
ctr[0] = block0[0] & 0x07;
ctr[1..1 + iv.len()].copy_from_slice(&block0[1..1 + iv.len()]);
ctr[15] = 0x01;
return Self {
key: key,
aad_header: aad_header,
aad_header_len: aad_header_len,
block0: block0,
ctr: ctr,
};
}
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize, const IV_SIZE: usize> Cipher<'c>
for AesCcm<'c, KEY_SIZE, TAG_SIZE, IV_SIZE>
{
const BLOCK_SIZE: usize = AES_BLOCK_SIZE;
fn key(&self) -> &'c [u8] {
self.key
}
fn iv(&self) -> &[u8] {
self.ctr.as_slice()
}
fn set_algomode(&self, p: pac::cryp::Cryp) {
p.cr().modify(|w| w.set_algomode0(1));
p.cr().modify(|w| w.set_algomode3(true));
}
fn init_phase_blocking<T: Instance, DmaIn, DmaOut>(&self, p: pac::cryp::Cryp, cryp: &Cryp<T, DmaIn, DmaOut>) {
p.cr().modify(|w| w.set_gcm_ccmph(0));
cryp.write_bytes_blocking(Self::BLOCK_SIZE, &self.block0);
p.cr().modify(|w| w.set_crypen(true));
while p.cr().read().crypen() {}
}
async fn init_phase<T: Instance, DmaIn, DmaOut>(&self, p: pac::cryp::Cryp, cryp: &mut Cryp<'_, T, DmaIn, DmaOut>)
where
DmaIn: crate::cryp::DmaIn<T>,
DmaOut: crate::cryp::DmaOut<T>,
{
p.cr().modify(|w| w.set_gcm_ccmph(0));
Cryp::<T, DmaIn, DmaOut>::write_bytes(&mut cryp.indma, Self::BLOCK_SIZE, &self.block0).await;
p.cr().modify(|w| w.set_crypen(true));
while p.cr().read().crypen() {}
}
fn get_header_block(&self) -> &[u8] {
return &self.aad_header[0..self.aad_header_len];
}
#[cfg(cryp_v2)]
fn pre_final(&self, p: pac::cryp::Cryp, dir: Direction, _padding_len: usize) -> [u32; 4] {
let mut temp1 = [0; 4];
if dir == Direction::Decrypt {
p.cr().modify(|w| w.set_crypen(false));
let iv1temp = p.init(1).ivrr().read();
temp1[0] = p.csgcmccmr(0).read().swap_bytes();
temp1[1] = p.csgcmccmr(1).read().swap_bytes();
temp1[2] = p.csgcmccmr(2).read().swap_bytes();
temp1[3] = p.csgcmccmr(3).read().swap_bytes();
p.init(1).ivrr().write_value(iv1temp);
p.cr().modify(|w| w.set_algomode3(false));
p.cr().modify(|w| w.set_algomode0(6));
p.cr().modify(|w| w.set_crypen(true));
}
return temp1;
}
#[cfg(any(cryp_v3, cryp_v4))]
fn pre_final(&self, p: pac::cryp::Cryp, _dir: Direction, padding_len: usize) -> [u32; 4] {
p.cr().modify(|w| w.set_npblb(padding_len as u8));
[0; 4]
}
#[cfg(cryp_v2)]
fn post_final_blocking<T: Instance, DmaIn, DmaOut>(
&self,
p: pac::cryp::Cryp,
cryp: &Cryp<T, DmaIn, DmaOut>,
dir: Direction,
int_data: &mut [u8; AES_BLOCK_SIZE],
temp1: [u32; 4],
padding_mask: [u8; 16],
) {
if dir == Direction::Decrypt {
let mut temp2 = [0; 4];
temp2[0] = p.csgcmccmr(0).read().swap_bytes();
temp2[1] = p.csgcmccmr(1).read().swap_bytes();
temp2[2] = p.csgcmccmr(2).read().swap_bytes();
temp2[3] = p.csgcmccmr(3).read().swap_bytes();
p.cr().modify(|w| w.set_algomode3(true));
p.cr().modify(|w| w.set_algomode0(1));
p.cr().modify(|w| w.set_gcm_ccmph(3));
p.cr().modify(|w| w.set_gcm_ccmph(1));
for i in 0..AES_BLOCK_SIZE {
int_data[i] = int_data[i] & padding_mask[i];
}
let mut in_data: [u32; 4] = [0; 4];
for i in 0..in_data.len() {
let mut int_bytes: [u8; 4] = [0; 4];
int_bytes.copy_from_slice(&int_data[(i * 4)..(i * 4) + 4]);
let int_word = u32::from_le_bytes(int_bytes);
in_data[i] = int_word;
in_data[i] = in_data[i] ^ temp1[i] ^ temp2[i];
}
cryp.write_words_blocking(Self::BLOCK_SIZE, &in_data);
}
}
#[cfg(cryp_v2)]
async fn post_final<T: Instance, DmaIn, DmaOut>(
&self,
p: pac::cryp::Cryp,
cryp: &mut Cryp<'_, T, DmaIn, DmaOut>,
dir: Direction,
int_data: &mut [u8; AES_BLOCK_SIZE],
temp1: [u32; 4],
padding_mask: [u8; 16],
) where
DmaIn: crate::cryp::DmaIn<T>,
DmaOut: crate::cryp::DmaOut<T>,
{
if dir == Direction::Decrypt {
let mut temp2 = [0; 4];
temp2[0] = p.csgcmccmr(0).read().swap_bytes();
temp2[1] = p.csgcmccmr(1).read().swap_bytes();
temp2[2] = p.csgcmccmr(2).read().swap_bytes();
temp2[3] = p.csgcmccmr(3).read().swap_bytes();
p.cr().modify(|w| w.set_algomode3(true));
p.cr().modify(|w| w.set_algomode0(1));
p.cr().modify(|w| w.set_gcm_ccmph(3));
p.cr().modify(|w| w.set_gcm_ccmph(1));
for i in 0..AES_BLOCK_SIZE {
int_data[i] = int_data[i] & padding_mask[i];
}
let mut in_data: [u32; 4] = [0; 4];
for i in 0..in_data.len() {
let mut int_bytes: [u8; 4] = [0; 4];
int_bytes.copy_from_slice(&int_data[(i * 4)..(i * 4) + 4]);
let int_word = u32::from_le_bytes(int_bytes);
in_data[i] = int_word;
in_data[i] = in_data[i] ^ temp1[i] ^ temp2[i];
}
Cryp::<T, DmaIn, DmaOut>::write_words(&mut cryp.indma, Self::BLOCK_SIZE, &in_data).await;
}
}
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const TAG_SIZE: usize, const IV_SIZE: usize> CipherSized for AesCcm<'c, { 128 / 8 }, TAG_SIZE, IV_SIZE> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const TAG_SIZE: usize, const IV_SIZE: usize> CipherSized for AesCcm<'c, { 192 / 8 }, TAG_SIZE, IV_SIZE> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const TAG_SIZE: usize, const IV_SIZE: usize> CipherSized for AesCcm<'c, { 256 / 8 }, TAG_SIZE, IV_SIZE> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize, const IV_SIZE: usize> CipherAuthenticated<4> for AesCcm<'c, KEY_SIZE, 4, IV_SIZE> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize, const IV_SIZE: usize> CipherAuthenticated<6> for AesCcm<'c, KEY_SIZE, 6, IV_SIZE> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize, const IV_SIZE: usize> CipherAuthenticated<8> for AesCcm<'c, KEY_SIZE, 8, IV_SIZE> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize, const IV_SIZE: usize> CipherAuthenticated<10> for AesCcm<'c, KEY_SIZE, 10, IV_SIZE> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize, const IV_SIZE: usize> CipherAuthenticated<12> for AesCcm<'c, KEY_SIZE, 12, IV_SIZE> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize, const IV_SIZE: usize> CipherAuthenticated<14> for AesCcm<'c, KEY_SIZE, 14, IV_SIZE> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize, const IV_SIZE: usize> CipherAuthenticated<16> for AesCcm<'c, KEY_SIZE, 16, IV_SIZE> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize> IVSized for AesCcm<'c, KEY_SIZE, TAG_SIZE, 7> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize> IVSized for AesCcm<'c, KEY_SIZE, TAG_SIZE, 8> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize> IVSized for AesCcm<'c, KEY_SIZE, TAG_SIZE, 9> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize> IVSized for AesCcm<'c, KEY_SIZE, TAG_SIZE, 10> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize> IVSized for AesCcm<'c, KEY_SIZE, TAG_SIZE, 11> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize> IVSized for AesCcm<'c, KEY_SIZE, TAG_SIZE, 12> {}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize> IVSized for AesCcm<'c, KEY_SIZE, TAG_SIZE, 13> {}
#[allow(dead_code)]
pub struct Context<'c, C: Cipher<'c> + CipherSized> {
phantom_data: PhantomData<&'c C>,
cipher: &'c C,
dir: Direction,
last_block_processed: bool,
header_processed: bool,
aad_complete: bool,
cr: u32,
iv: [u32; 4],
csgcmccm: [u32; 8],
csgcm: [u32; 8],
header_len: u64,
payload_len: u64,
aad_buffer: [u8; 16],
aad_buffer_len: usize,
}
#[derive(PartialEq, Clone, Copy)]
pub enum Direction {
Encrypt,
Decrypt,
}
pub struct Cryp<'d, T: Instance, DmaIn = NoDma, DmaOut = NoDma> {
_peripheral: PeripheralRef<'d, T>,
indma: PeripheralRef<'d, DmaIn>,
outdma: PeripheralRef<'d, DmaOut>,
}
impl<'d, T: Instance, DmaIn, DmaOut> Cryp<'d, T, DmaIn, DmaOut> {
pub fn new(
peri: impl Peripheral<P = T> + 'd,
indma: impl Peripheral<P = DmaIn> + 'd,
outdma: impl Peripheral<P = DmaOut> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
) -> Self {
rcc::enable_and_reset::<T>();
into_ref!(peri, indma, outdma);
let instance = Self {
_peripheral: peri,
indma: indma,
outdma: outdma,
};
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
instance
}
pub fn start_blocking<'c, C: Cipher<'c> + CipherSized + IVSized>(
&self,
cipher: &'c C,
dir: Direction,
) -> Context<'c, C> {
let mut ctx: Context<'c, C> = Context {
dir,
last_block_processed: false,
cr: 0,
iv: [0; 4],
csgcmccm: [0; 8],
csgcm: [0; 8],
aad_complete: false,
header_len: 0,
payload_len: 0,
cipher: cipher,
phantom_data: PhantomData,
header_processed: false,
aad_buffer: [0; 16],
aad_buffer_len: 0,
};
T::regs().cr().modify(|w| w.set_crypen(false));
let key = ctx.cipher.key();
if key.len() == (128 / 8) {
T::regs().cr().modify(|w| w.set_keysize(0));
} else if key.len() == (192 / 8) {
T::regs().cr().modify(|w| w.set_keysize(1));
} else if key.len() == (256 / 8) {
T::regs().cr().modify(|w| w.set_keysize(2));
}
self.load_key(key);
T::regs().cr().modify(|w| w.set_datatype(2));
ctx.cipher.prepare_key(T::regs());
ctx.cipher.set_algomode(T::regs());
if dir == Direction::Encrypt {
T::regs().cr().modify(|w| w.set_algodir(false));
} else {
T::regs().cr().modify(|w| w.set_algodir(true));
}
let iv = ctx.cipher.iv();
let mut full_iv: [u8; 16] = [0; 16];
full_iv[0..iv.len()].copy_from_slice(iv);
let mut iv_idx = 0;
let mut iv_word: [u8; 4] = [0; 4];
iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
iv_idx += 4;
T::regs().init(0).ivlr().write_value(u32::from_be_bytes(iv_word));
iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
iv_idx += 4;
T::regs().init(0).ivrr().write_value(u32::from_be_bytes(iv_word));
iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
iv_idx += 4;
T::regs().init(1).ivlr().write_value(u32::from_be_bytes(iv_word));
iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
T::regs().init(1).ivrr().write_value(u32::from_be_bytes(iv_word));
T::regs().cr().modify(|w| w.fflush());
ctx.cipher.init_phase_blocking(T::regs(), self);
self.store_context(&mut ctx);
ctx
}
pub async fn start<'c, C: Cipher<'c> + CipherSized + IVSized>(
&mut self,
cipher: &'c C,
dir: Direction,
) -> Context<'c, C>
where
DmaIn: crate::cryp::DmaIn<T>,
DmaOut: crate::cryp::DmaOut<T>,
{
let mut ctx: Context<'c, C> = Context {
dir,
last_block_processed: false,
cr: 0,
iv: [0; 4],
csgcmccm: [0; 8],
csgcm: [0; 8],
aad_complete: false,
header_len: 0,
payload_len: 0,
cipher: cipher,
phantom_data: PhantomData,
header_processed: false,
aad_buffer: [0; 16],
aad_buffer_len: 0,
};
T::regs().cr().modify(|w| w.set_crypen(false));
let key = ctx.cipher.key();
if key.len() == (128 / 8) {
T::regs().cr().modify(|w| w.set_keysize(0));
} else if key.len() == (192 / 8) {
T::regs().cr().modify(|w| w.set_keysize(1));
} else if key.len() == (256 / 8) {
T::regs().cr().modify(|w| w.set_keysize(2));
}
self.load_key(key);
T::regs().cr().modify(|w| w.set_datatype(2));
ctx.cipher.prepare_key(T::regs());
ctx.cipher.set_algomode(T::regs());
if dir == Direction::Encrypt {
T::regs().cr().modify(|w| w.set_algodir(false));
} else {
T::regs().cr().modify(|w| w.set_algodir(true));
}
let iv = ctx.cipher.iv();
let mut full_iv: [u8; 16] = [0; 16];
full_iv[0..iv.len()].copy_from_slice(iv);
let mut iv_idx = 0;
let mut iv_word: [u8; 4] = [0; 4];
iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
iv_idx += 4;
T::regs().init(0).ivlr().write_value(u32::from_be_bytes(iv_word));
iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
iv_idx += 4;
T::regs().init(0).ivrr().write_value(u32::from_be_bytes(iv_word));
iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
iv_idx += 4;
T::regs().init(1).ivlr().write_value(u32::from_be_bytes(iv_word));
iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
T::regs().init(1).ivrr().write_value(u32::from_be_bytes(iv_word));
T::regs().cr().modify(|w| w.fflush());
ctx.cipher.init_phase(T::regs(), self).await;
self.store_context(&mut ctx);
ctx
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
pub fn aad_blocking<
'c,
const TAG_SIZE: usize,
C: Cipher<'c> + CipherSized + IVSized + CipherAuthenticated<TAG_SIZE>,
>(
&self,
ctx: &mut Context<'c, C>,
aad: &[u8],
last_aad_block: bool,
) {
self.load_context(ctx);
if ctx.aad_complete {
panic!("Cannot update AAD after starting payload!")
}
ctx.header_len += aad.len() as u64;
T::regs().cr().modify(|w| w.set_crypen(false));
T::regs().cr().modify(|w| w.set_gcm_ccmph(1));
T::regs().cr().modify(|w| w.set_crypen(true));
if !ctx.header_processed {
ctx.header_processed = true;
let header = ctx.cipher.get_header_block();
ctx.aad_buffer[0..header.len()].copy_from_slice(header);
ctx.aad_buffer_len += header.len();
}
let len_to_copy = min(aad.len(), C::BLOCK_SIZE - ctx.aad_buffer_len);
ctx.aad_buffer[ctx.aad_buffer_len..ctx.aad_buffer_len + len_to_copy].copy_from_slice(&aad[..len_to_copy]);
ctx.aad_buffer_len += len_to_copy;
ctx.aad_buffer[ctx.aad_buffer_len..].fill(0);
let mut aad_len_remaining = aad.len() - len_to_copy;
if ctx.aad_buffer_len < C::BLOCK_SIZE {
if last_aad_block {
self.write_bytes_blocking(C::BLOCK_SIZE, &ctx.aad_buffer);
while !T::regs().sr().read().ifem() {}
ctx.aad_complete = true;
T::regs().cr().modify(|w| w.set_crypen(false));
T::regs().cr().modify(|w| w.set_gcm_ccmph(2));
T::regs().cr().modify(|w| w.fflush());
} else {
return;
}
} else {
self.write_bytes_blocking(C::BLOCK_SIZE, &ctx.aad_buffer);
while !T::regs().sr().read().ifem() {}
}
ctx.aad_buffer_len = 0;
let leftovers = aad_len_remaining % C::BLOCK_SIZE;
ctx.aad_buffer[..leftovers].copy_from_slice(&aad[aad.len() - leftovers..aad.len()]);
ctx.aad_buffer_len += leftovers;
ctx.aad_buffer[ctx.aad_buffer_len..].fill(0);
aad_len_remaining -= leftovers;
assert_eq!(aad_len_remaining % C::BLOCK_SIZE, 0);
let num_full_blocks = aad_len_remaining / C::BLOCK_SIZE;
let start_index = len_to_copy;
let end_index = start_index + (C::BLOCK_SIZE * num_full_blocks);
self.write_bytes_blocking(C::BLOCK_SIZE, &aad[start_index..end_index]);
if last_aad_block {
if leftovers > 0 {
self.write_bytes_blocking(C::BLOCK_SIZE, &ctx.aad_buffer);
}
ctx.aad_complete = true;
T::regs().cr().modify(|w| w.set_crypen(false));
T::regs().cr().modify(|w| w.set_gcm_ccmph(2));
T::regs().cr().modify(|w| w.fflush());
}
self.store_context(ctx);
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
pub async fn aad<'c, const TAG_SIZE: usize, C: Cipher<'c> + CipherSized + IVSized + CipherAuthenticated<TAG_SIZE>>(
&mut self,
ctx: &mut Context<'c, C>,
aad: &[u8],
last_aad_block: bool,
) where
DmaIn: crate::cryp::DmaIn<T>,
DmaOut: crate::cryp::DmaOut<T>,
{
self.load_context(ctx);
if ctx.aad_complete {
panic!("Cannot update AAD after starting payload!")
}
ctx.header_len += aad.len() as u64;
T::regs().cr().modify(|w| w.set_crypen(false));
T::regs().cr().modify(|w| w.set_gcm_ccmph(1));
T::regs().cr().modify(|w| w.set_crypen(true));
if !ctx.header_processed {
ctx.header_processed = true;
let header = ctx.cipher.get_header_block();
ctx.aad_buffer[0..header.len()].copy_from_slice(header);
ctx.aad_buffer_len += header.len();
}
let len_to_copy = min(aad.len(), C::BLOCK_SIZE - ctx.aad_buffer_len);
ctx.aad_buffer[ctx.aad_buffer_len..ctx.aad_buffer_len + len_to_copy].copy_from_slice(&aad[..len_to_copy]);
ctx.aad_buffer_len += len_to_copy;
ctx.aad_buffer[ctx.aad_buffer_len..].fill(0);
let mut aad_len_remaining = aad.len() - len_to_copy;
if ctx.aad_buffer_len < C::BLOCK_SIZE {
if last_aad_block {
Self::write_bytes(&mut self.indma, C::BLOCK_SIZE, &ctx.aad_buffer).await;
assert_eq!(T::regs().sr().read().ifem(), true);
ctx.aad_complete = true;
T::regs().cr().modify(|w| w.set_crypen(false));
T::regs().cr().modify(|w| w.set_gcm_ccmph(2));
T::regs().cr().modify(|w| w.fflush());
} else {
return;
}
} else {
Self::write_bytes(&mut self.indma, C::BLOCK_SIZE, &ctx.aad_buffer).await;
assert_eq!(T::regs().sr().read().ifem(), true);
}
ctx.aad_buffer_len = 0;
let leftovers = aad_len_remaining % C::BLOCK_SIZE;
ctx.aad_buffer[..leftovers].copy_from_slice(&aad[aad.len() - leftovers..aad.len()]);
ctx.aad_buffer_len += leftovers;
ctx.aad_buffer[ctx.aad_buffer_len..].fill(0);
aad_len_remaining -= leftovers;
assert_eq!(aad_len_remaining % C::BLOCK_SIZE, 0);
let num_full_blocks = aad_len_remaining / C::BLOCK_SIZE;
let start_index = len_to_copy;
let end_index = start_index + (C::BLOCK_SIZE * num_full_blocks);
Self::write_bytes(&mut self.indma, C::BLOCK_SIZE, &aad[start_index..end_index]).await;
if last_aad_block {
if leftovers > 0 {
Self::write_bytes(&mut self.indma, C::BLOCK_SIZE, &ctx.aad_buffer).await;
assert_eq!(T::regs().sr().read().ifem(), true);
}
ctx.aad_complete = true;
T::regs().cr().modify(|w| w.set_crypen(false));
T::regs().cr().modify(|w| w.set_gcm_ccmph(2));
T::regs().cr().modify(|w| w.fflush());
}
self.store_context(ctx);
}
pub fn payload_blocking<'c, C: Cipher<'c> + CipherSized + IVSized>(
&self,
ctx: &mut Context<'c, C>,
input: &[u8],
output: &mut [u8],
last_block: bool,
) {
self.load_context(ctx);
let last_block_remainder = input.len() % C::BLOCK_SIZE;
if !ctx.aad_complete && ctx.header_len > 0 {
panic!("Additional associated data must be processed first!");
} else if !ctx.aad_complete {
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
{
ctx.aad_complete = true;
T::regs().cr().modify(|w| w.set_crypen(false));
T::regs().cr().modify(|w| w.set_gcm_ccmph(2));
T::regs().cr().modify(|w| w.fflush());
T::regs().cr().modify(|w| w.set_crypen(true));
}
}
if ctx.last_block_processed {
panic!("The last block has already been processed!");
}
if input.len() > output.len() {
panic!("Output buffer length must match input length.");
}
if !last_block {
if last_block_remainder != 0 {
panic!("Input length must be a multiple of {} bytes.", C::BLOCK_SIZE);
}
}
if C::REQUIRES_PADDING {
if last_block_remainder != 0 {
panic!("Input must be a multiple of {} bytes in ECB and CBC modes. Consider padding or ciphertext stealing.", C::BLOCK_SIZE);
}
}
if last_block {
ctx.last_block_processed = true;
}
let num_full_blocks = input.len() / C::BLOCK_SIZE;
for block in 0..num_full_blocks {
let index = block * C::BLOCK_SIZE;
self.write_bytes_blocking(C::BLOCK_SIZE, &input[index..index + C::BLOCK_SIZE]);
self.read_bytes_blocking(C::BLOCK_SIZE, &mut output[index..index + C::BLOCK_SIZE]);
}
if last_block_remainder > 0 {
let padding_len = C::BLOCK_SIZE - last_block_remainder;
let temp1 = ctx.cipher.pre_final(T::regs(), ctx.dir, padding_len);
let mut intermediate_data: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
let mut last_block: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
last_block[..last_block_remainder].copy_from_slice(&input[input.len() - last_block_remainder..input.len()]);
self.write_bytes_blocking(C::BLOCK_SIZE, &last_block);
self.read_bytes_blocking(C::BLOCK_SIZE, &mut intermediate_data);
let output_len = output.len();
output[output_len - last_block_remainder..output_len]
.copy_from_slice(&intermediate_data[0..last_block_remainder]);
let mut mask: [u8; 16] = [0; 16];
mask[..last_block_remainder].fill(0xFF);
ctx.cipher
.post_final_blocking(T::regs(), self, ctx.dir, &mut intermediate_data, temp1, mask);
}
ctx.payload_len += input.len() as u64;
self.store_context(ctx);
}
pub async fn payload<'c, C: Cipher<'c> + CipherSized + IVSized>(
&mut self,
ctx: &mut Context<'c, C>,
input: &[u8],
output: &mut [u8],
last_block: bool,
) where
DmaIn: crate::cryp::DmaIn<T>,
DmaOut: crate::cryp::DmaOut<T>,
{
self.load_context(ctx);
let last_block_remainder = input.len() % C::BLOCK_SIZE;
if !ctx.aad_complete && ctx.header_len > 0 {
panic!("Additional associated data must be processed first!");
} else if !ctx.aad_complete {
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
{
ctx.aad_complete = true;
T::regs().cr().modify(|w| w.set_crypen(false));
T::regs().cr().modify(|w| w.set_gcm_ccmph(2));
T::regs().cr().modify(|w| w.fflush());
T::regs().cr().modify(|w| w.set_crypen(true));
}
}
if ctx.last_block_processed {
panic!("The last block has already been processed!");
}
if input.len() > output.len() {
panic!("Output buffer length must match input length.");
}
if !last_block {
if last_block_remainder != 0 {
panic!("Input length must be a multiple of {} bytes.", C::BLOCK_SIZE);
}
}
if C::REQUIRES_PADDING {
if last_block_remainder != 0 {
panic!("Input must be a multiple of {} bytes in ECB and CBC modes. Consider padding or ciphertext stealing.", C::BLOCK_SIZE);
}
}
if last_block {
ctx.last_block_processed = true;
}
let num_full_blocks = input.len() / C::BLOCK_SIZE;
for block in 0..num_full_blocks {
let index = block * C::BLOCK_SIZE;
let read = Self::read_bytes(
&mut self.outdma,
C::BLOCK_SIZE,
&mut output[index..index + C::BLOCK_SIZE],
);
let write = Self::write_bytes(&mut self.indma, C::BLOCK_SIZE, &input[index..index + C::BLOCK_SIZE]);
embassy_futures::join::join(read, write).await;
}
if last_block_remainder > 0 {
let padding_len = C::BLOCK_SIZE - last_block_remainder;
let temp1 = ctx.cipher.pre_final(T::regs(), ctx.dir, padding_len);
let mut intermediate_data: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
let mut last_block: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
last_block[..last_block_remainder].copy_from_slice(&input[input.len() - last_block_remainder..input.len()]);
let read = Self::read_bytes(&mut self.outdma, C::BLOCK_SIZE, &mut intermediate_data);
let write = Self::write_bytes(&mut self.indma, C::BLOCK_SIZE, &last_block);
embassy_futures::join::join(read, write).await;
let output_len = output.len();
output[output_len - last_block_remainder..output_len]
.copy_from_slice(&intermediate_data[0..last_block_remainder]);
let mut mask: [u8; 16] = [0; 16];
mask[..last_block_remainder].fill(0xFF);
ctx.cipher
.post_final(T::regs(), self, ctx.dir, &mut intermediate_data, temp1, mask)
.await;
}
ctx.payload_len += input.len() as u64;
self.store_context(ctx);
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
pub fn finish_blocking<
'c,
const TAG_SIZE: usize,
C: Cipher<'c> + CipherSized + IVSized + CipherAuthenticated<TAG_SIZE>,
>(
&self,
mut ctx: Context<'c, C>,
) -> [u8; TAG_SIZE] {
self.load_context(&mut ctx);
T::regs().cr().modify(|w| w.set_crypen(false));
T::regs().cr().modify(|w| w.set_gcm_ccmph(3));
T::regs().cr().modify(|w| w.set_crypen(true));
let headerlen1: u32 = ((ctx.header_len * 8) >> 32) as u32;
let headerlen2: u32 = (ctx.header_len * 8) as u32;
let payloadlen1: u32 = ((ctx.payload_len * 8) >> 32) as u32;
let payloadlen2: u32 = (ctx.payload_len * 8) as u32;
#[cfg(cryp_v2)]
let footer: [u32; 4] = [
headerlen1.swap_bytes(),
headerlen2.swap_bytes(),
payloadlen1.swap_bytes(),
payloadlen2.swap_bytes(),
];
#[cfg(any(cryp_v3, cryp_v4))]
let footer: [u32; 4] = [headerlen1, headerlen2, payloadlen1, payloadlen2];
self.write_words_blocking(C::BLOCK_SIZE, &footer);
while !T::regs().sr().read().ofne() {}
let mut full_tag: [u8; 16] = [0; 16];
self.read_bytes_blocking(C::BLOCK_SIZE, &mut full_tag);
let mut tag: [u8; TAG_SIZE] = [0; TAG_SIZE];
tag.copy_from_slice(&full_tag[0..TAG_SIZE]);
T::regs().cr().modify(|w| w.set_crypen(false));
tag
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
pub async fn finish<
'c,
const TAG_SIZE: usize,
C: Cipher<'c> + CipherSized + IVSized + CipherAuthenticated<TAG_SIZE>,
>(
&mut self,
mut ctx: Context<'c, C>,
) -> [u8; TAG_SIZE]
where
DmaIn: crate::cryp::DmaIn<T>,
DmaOut: crate::cryp::DmaOut<T>,
{
self.load_context(&mut ctx);
T::regs().cr().modify(|w| w.set_crypen(false));
T::regs().cr().modify(|w| w.set_gcm_ccmph(3));
T::regs().cr().modify(|w| w.set_crypen(true));
let headerlen1: u32 = ((ctx.header_len * 8) >> 32) as u32;
let headerlen2: u32 = (ctx.header_len * 8) as u32;
let payloadlen1: u32 = ((ctx.payload_len * 8) >> 32) as u32;
let payloadlen2: u32 = (ctx.payload_len * 8) as u32;
#[cfg(cryp_v2)]
let footer: [u32; 4] = [
headerlen1.swap_bytes(),
headerlen2.swap_bytes(),
payloadlen1.swap_bytes(),
payloadlen2.swap_bytes(),
];
#[cfg(any(cryp_v3, cryp_v4))]
let footer: [u32; 4] = [headerlen1, headerlen2, payloadlen1, payloadlen2];
let write = Self::write_words(&mut self.indma, C::BLOCK_SIZE, &footer);
let mut full_tag: [u8; 16] = [0; 16];
let read = Self::read_bytes(&mut self.outdma, C::BLOCK_SIZE, &mut full_tag);
embassy_futures::join::join(read, write).await;
let mut tag: [u8; TAG_SIZE] = [0; TAG_SIZE];
tag.copy_from_slice(&full_tag[0..TAG_SIZE]);
T::regs().cr().modify(|w| w.set_crypen(false));
tag
}
fn load_key(&self, key: &[u8]) {
let mut keyidx = 0;
let mut keyword: [u8; 4] = [0; 4];
let keylen = key.len() * 8;
if keylen > 192 {
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
keyidx += 4;
T::regs().key(0).klr().write_value(u32::from_be_bytes(keyword));
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
keyidx += 4;
T::regs().key(0).krr().write_value(u32::from_be_bytes(keyword));
}
if keylen > 128 {
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
keyidx += 4;
T::regs().key(1).klr().write_value(u32::from_be_bytes(keyword));
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
keyidx += 4;
T::regs().key(1).krr().write_value(u32::from_be_bytes(keyword));
}
if keylen > 64 {
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
keyidx += 4;
T::regs().key(2).klr().write_value(u32::from_be_bytes(keyword));
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
keyidx += 4;
T::regs().key(2).krr().write_value(u32::from_be_bytes(keyword));
}
keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
keyidx += 4;
T::regs().key(3).klr().write_value(u32::from_be_bytes(keyword));
keyword = [0; 4];
keyword[0..key.len() - keyidx].copy_from_slice(&key[keyidx..key.len()]);
T::regs().key(3).krr().write_value(u32::from_be_bytes(keyword));
}
fn store_context<'c, C: Cipher<'c> + CipherSized>(&self, ctx: &mut Context<'c, C>) {
while !T::regs().sr().read().ifem() {}
while T::regs().sr().read().ofne() {}
while T::regs().sr().read().busy() {}
T::regs().cr().modify(|w| w.set_crypen(false));
ctx.cr = T::regs().cr().read().0;
ctx.iv[0] = T::regs().init(0).ivlr().read();
ctx.iv[1] = T::regs().init(0).ivrr().read();
ctx.iv[2] = T::regs().init(1).ivlr().read();
ctx.iv[3] = T::regs().init(1).ivrr().read();
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
for i in 0..8 {
ctx.csgcmccm[i] = T::regs().csgcmccmr(i).read();
ctx.csgcm[i] = T::regs().csgcmr(i).read();
}
}
fn load_context<'c, C: Cipher<'c> + CipherSized>(&self, ctx: &Context<'c, C>) {
T::regs().cr().write(|w| w.0 = ctx.cr);
T::regs().init(0).ivlr().write_value(ctx.iv[0]);
T::regs().init(0).ivrr().write_value(ctx.iv[1]);
T::regs().init(1).ivlr().write_value(ctx.iv[2]);
T::regs().init(1).ivrr().write_value(ctx.iv[3]);
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
for i in 0..8 {
T::regs().csgcmccmr(i).write_value(ctx.csgcmccm[i]);
T::regs().csgcmr(i).write_value(ctx.csgcm[i]);
}
self.load_key(ctx.cipher.key());
ctx.cipher.prepare_key(T::regs());
T::regs().cr().write(|w| w.0 = ctx.cr);
T::regs().cr().modify(|w| w.set_crypen(true));
}
fn write_bytes_blocking(&self, block_size: usize, blocks: &[u8]) {
assert_eq!(blocks.len() % block_size, 0);
let mut index = 0;
let end_index = blocks.len();
while index < end_index {
let mut in_word: [u8; 4] = [0; 4];
in_word.copy_from_slice(&blocks[index..index + 4]);
T::regs().din().write_value(u32::from_ne_bytes(in_word));
index += 4;
if index % block_size == 0 {
while !T::regs().sr().read().ifem() {}
}
}
}
async fn write_bytes(dma: &mut PeripheralRef<'_, DmaIn>, block_size: usize, blocks: &[u8])
where
DmaIn: crate::cryp::DmaIn<T>,
{
if blocks.len() == 0 {
return;
}
assert_eq!(blocks.len() % block_size, 0);
let dma_request = dma.request();
let dst_ptr = T::regs().din().as_ptr();
let num_words = blocks.len() / 4;
let src_ptr = ptr::slice_from_raw_parts(blocks.as_ptr().cast(), num_words);
let options = TransferOptions {
#[cfg(not(gpdma))]
priority: crate::dma::Priority::High,
..Default::default()
};
let dma_transfer = unsafe { Transfer::new_write_raw(dma, dma_request, src_ptr, dst_ptr, options) };
T::regs().dmacr().modify(|w| w.set_dien(true));
dma_transfer.await;
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
fn write_words_blocking(&self, block_size: usize, blocks: &[u32]) {
assert_eq!((blocks.len() * 4) % block_size, 0);
let mut byte_counter: usize = 0;
for word in blocks {
T::regs().din().write_value(*word);
byte_counter += 4;
if byte_counter % block_size == 0 {
while !T::regs().sr().read().ifem() {}
}
}
}
#[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
async fn write_words(dma: &mut PeripheralRef<'_, DmaIn>, block_size: usize, blocks: &[u32])
where
DmaIn: crate::cryp::DmaIn<T>,
{
if blocks.len() == 0 {
return;
}
assert_eq!((blocks.len() * 4) % block_size, 0);
let dma_request = dma.request();
let dst_ptr = T::regs().din().as_ptr();
let num_words = blocks.len();
let src_ptr = ptr::slice_from_raw_parts(blocks.as_ptr().cast(), num_words);
let options = TransferOptions {
#[cfg(not(gpdma))]
priority: crate::dma::Priority::High,
..Default::default()
};
let dma_transfer = unsafe { Transfer::new_write_raw(dma, dma_request, src_ptr, dst_ptr, options) };
T::regs().dmacr().modify(|w| w.set_dien(true));
dma_transfer.await;
}
fn read_bytes_blocking(&self, block_size: usize, blocks: &mut [u8]) {
while !T::regs().sr().read().ofne() {}
assert_eq!(blocks.len() % block_size, 0);
let mut index = 0;
let end_index = blocks.len();
while index < end_index {
let out_word: u32 = T::regs().dout().read();
blocks[index..index + 4].copy_from_slice(u32::to_ne_bytes(out_word).as_slice());
index += 4;
}
}
async fn read_bytes(dma: &mut PeripheralRef<'_, DmaOut>, block_size: usize, blocks: &mut [u8])
where
DmaOut: crate::cryp::DmaOut<T>,
{
if blocks.len() == 0 {
return;
}
assert_eq!(blocks.len() % block_size, 0);
let dma_request = dma.request();
let src_ptr = T::regs().dout().as_ptr();
let num_words = blocks.len() / 4;
let dst_ptr = ptr::slice_from_raw_parts_mut(blocks.as_mut_ptr().cast(), num_words);
let options = TransferOptions {
#[cfg(not(gpdma))]
priority: crate::dma::Priority::VeryHigh,
..Default::default()
};
let dma_transfer = unsafe { Transfer::new_read_raw(dma, dma_request, src_ptr, dst_ptr, options) };
T::regs().dmacr().modify(|w| w.set_doen(true));
dma_transfer.await;
}
}
trait SealedInstance {
fn regs() -> pac::cryp::Cryp;
}
#[allow(private_bounds)]
pub trait Instance: SealedInstance + Peripheral<P = Self> + crate::rcc::RccPeripheral + 'static + Send {
type Interrupt: interrupt::typelevel::Interrupt;
}
foreach_interrupt!(
($inst:ident, cryp, CRYP, GLOBAL, $irq:ident) => {
impl Instance for peripherals::$inst {
type Interrupt = crate::interrupt::typelevel::$irq;
}
impl SealedInstance for peripherals::$inst {
fn regs() -> crate::pac::cryp::Cryp {
crate::pac::$inst
}
}
};
);
dma_trait!(DmaIn, Instance);
dma_trait!(DmaOut, Instance);