embassy_stm32/rcc/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
//! Reset and Clock Control (RCC)

#![macro_use]
#![allow(missing_docs)] // TODO

use core::mem::MaybeUninit;

mod bd;
pub use bd::*;

#[cfg(any(mco, mco1, mco2))]
mod mco;
use critical_section::CriticalSection;
#[cfg(any(mco, mco1, mco2))]
pub use mco::*;

#[cfg(crs)]
mod hsi48;
#[cfg(crs)]
pub use hsi48::*;

#[cfg_attr(any(stm32f0, stm32f1, stm32f3), path = "f013.rs")]
#[cfg_attr(any(stm32f2, stm32f4, stm32f7), path = "f247.rs")]
#[cfg_attr(stm32c0, path = "c0.rs")]
#[cfg_attr(stm32g0, path = "g0.rs")]
#[cfg_attr(stm32g4, path = "g4.rs")]
#[cfg_attr(any(stm32h5, stm32h7, stm32h7rs), path = "h.rs")]
#[cfg_attr(any(stm32l0, stm32l1, stm32l4, stm32l5, stm32wb, stm32wl, stm32u0), path = "l.rs")]
#[cfg_attr(stm32u5, path = "u5.rs")]
#[cfg_attr(stm32wba, path = "wba.rs")]
mod _version;

pub use _version::*;
use stm32_metapac::RCC;

pub use crate::_generated::{mux, Clocks};
use crate::time::Hertz;

#[cfg(feature = "low-power")]
/// Must be written within a critical section
///
/// May be read without a critical section
pub(crate) static mut REFCOUNT_STOP1: u32 = 0;

#[cfg(feature = "low-power")]
/// Must be written within a critical section
///
/// May be read without a critical section
pub(crate) static mut REFCOUNT_STOP2: u32 = 0;

#[cfg(not(feature = "_dual-core"))]
/// Frozen clock frequencies
///
/// The existence of this value indicates that the clock configuration can no longer be changed
static mut CLOCK_FREQS: MaybeUninit<Clocks> = MaybeUninit::uninit();

#[cfg(feature = "_dual-core")]
static CLOCK_FREQS_PTR: core::sync::atomic::AtomicPtr<MaybeUninit<Clocks>> =
    core::sync::atomic::AtomicPtr::new(core::ptr::null_mut());

#[cfg(feature = "_dual-core")]
pub(crate) fn set_freqs_ptr(freqs: *mut MaybeUninit<Clocks>) {
    CLOCK_FREQS_PTR.store(freqs, core::sync::atomic::Ordering::SeqCst);
}

#[cfg(not(feature = "_dual-core"))]
/// Sets the clock frequencies
///
/// Safety: Sets a mutable global.
pub(crate) unsafe fn set_freqs(freqs: Clocks) {
    debug!("rcc: {:?}", freqs);
    CLOCK_FREQS = MaybeUninit::new(freqs);
}

#[cfg(feature = "_dual-core")]
/// Sets the clock frequencies
///
/// Safety: Sets a mutable global.
pub(crate) unsafe fn set_freqs(freqs: Clocks) {
    debug!("rcc: {:?}", freqs);
    CLOCK_FREQS_PTR
        .load(core::sync::atomic::Ordering::SeqCst)
        .write(MaybeUninit::new(freqs));
}

#[cfg(not(feature = "_dual-core"))]
/// Safety: Reads a mutable global.
pub(crate) unsafe fn get_freqs() -> &'static Clocks {
    (*core::ptr::addr_of_mut!(CLOCK_FREQS)).assume_init_ref()
}

#[cfg(feature = "_dual-core")]
/// Safety: Reads a mutable global.
pub(crate) unsafe fn get_freqs() -> &'static Clocks {
    unwrap!(CLOCK_FREQS_PTR.load(core::sync::atomic::Ordering::SeqCst).as_ref()).assume_init_ref()
}

pub(crate) trait SealedRccPeripheral {
    fn frequency() -> Hertz;
    const RCC_INFO: RccInfo;
}

#[allow(private_bounds)]
pub trait RccPeripheral: SealedRccPeripheral + 'static {}

/// Runtime information necessary to reset, enable and disable a peripheral.
pub(crate) struct RccInfo {
    /// Offset in 32-bit words of the xxxRSTR register into the RCC register block, or 0xff if the
    /// peripheral has no reset bit (we don't use an `Option` to save one byte of storage).
    reset_offset_or_0xff: u8,
    /// Position of the xxxRST bit within the xxxRSTR register (0..=31).
    reset_bit: u8,
    /// Offset in 32-bit words of the xxxENR register into the RCC register block.
    enable_offset: u8,
    /// Position of the xxxEN bit within the xxxENR register (0..=31).
    enable_bit: u8,
    /// If this peripheral shares the same xxxRSTR bit and xxxEN bit with other peripherals, we
    /// maintain a refcount in `crate::_generated::REFCOUNTS` at this index. If the bit is not
    /// shared, this is 0xff (we don't use an `Option` to save one byte of storage).
    refcount_idx_or_0xff: u8,
    /// Stop mode of the peripheral, used to maintain `REFCOUNT_STOP1` and `REFCOUNT_STOP2`.
    #[cfg(feature = "low-power")]
    stop_mode: StopMode,
}

#[cfg(feature = "low-power")]
#[allow(dead_code)]
pub(crate) enum StopMode {
    Standby,
    Stop2,
    Stop1,
}

impl RccInfo {
    /// Safety:
    /// - `reset_offset_and_bit`, if set, must correspond to valid xxxRST bit
    /// - `enable_offset_and_bit` must correspond to valid xxxEN bit
    /// - `refcount_idx`, if set, must correspond to valid refcount in `_generated::REFCOUNTS`
    /// - `stop_mode` must be valid
    pub(crate) const unsafe fn new(
        reset_offset_and_bit: Option<(u8, u8)>,
        enable_offset_and_bit: (u8, u8),
        refcount_idx: Option<u8>,
        #[cfg(feature = "low-power")] stop_mode: StopMode,
    ) -> Self {
        let (reset_offset_or_0xff, reset_bit) = match reset_offset_and_bit {
            Some((offset, bit)) => (offset, bit),
            None => (0xff, 0xff),
        };
        let (enable_offset, enable_bit) = enable_offset_and_bit;
        let refcount_idx_or_0xff = match refcount_idx {
            Some(idx) => idx,
            None => 0xff,
        };
        Self {
            reset_offset_or_0xff,
            reset_bit,
            enable_offset,
            enable_bit,
            refcount_idx_or_0xff,
            #[cfg(feature = "low-power")]
            stop_mode,
        }
    }

    // TODO: should this be `unsafe`?
    pub(crate) fn enable_and_reset_with_cs(&self, _cs: CriticalSection) {
        if self.refcount_idx_or_0xff != 0xff {
            let refcount_idx = self.refcount_idx_or_0xff as usize;

            // Use .get_mut instead of []-operator so that we control how bounds checks happen.
            // Otherwise, core::fmt will be pulled in here in order to format the integer in the
            // out-of-bounds error.
            if let Some(refcount) =
                unsafe { (*core::ptr::addr_of_mut!(crate::_generated::REFCOUNTS)).get_mut(refcount_idx) }
            {
                *refcount += 1;
                if *refcount > 1 {
                    return;
                }
            } else {
                panic!("refcount_idx out of bounds: {}", refcount_idx)
            }
        }

        #[cfg(feature = "low-power")]
        match self.stop_mode {
            StopMode::Standby => {}
            StopMode::Stop2 => unsafe {
                REFCOUNT_STOP2 += 1;
            },
            StopMode::Stop1 => unsafe {
                REFCOUNT_STOP1 += 1;
            },
        }

        // set the xxxRST bit
        let reset_ptr = self.reset_ptr();
        if let Some(reset_ptr) = reset_ptr {
            unsafe {
                let val = reset_ptr.read_volatile();
                reset_ptr.write_volatile(val | 1u32 << self.reset_bit);
            }
        }

        // set the xxxEN bit
        let enable_ptr = self.enable_ptr();
        unsafe {
            let val = enable_ptr.read_volatile();
            enable_ptr.write_volatile(val | 1u32 << self.enable_bit);
        }

        // we must wait two peripheral clock cycles before the clock is active
        // this seems to work, but might be incorrect
        // see http://efton.sk/STM32/gotcha/g183.html

        // dummy read (like in the ST HALs)
        let _ = unsafe { enable_ptr.read_volatile() };

        // DSB for good measure
        cortex_m::asm::dsb();

        // clear the xxxRST bit
        if let Some(reset_ptr) = reset_ptr {
            unsafe {
                let val = reset_ptr.read_volatile();
                reset_ptr.write_volatile(val & !(1u32 << self.reset_bit));
            }
        }
    }

    // TODO: should this be `unsafe`?
    pub(crate) fn disable_with_cs(&self, _cs: CriticalSection) {
        if self.refcount_idx_or_0xff != 0xff {
            let refcount_idx = self.refcount_idx_or_0xff as usize;

            // Use .get_mut instead of []-operator so that we control how bounds checks happen.
            // Otherwise, core::fmt will be pulled in here in order to format the integer in the
            // out-of-bounds error.
            if let Some(refcount) =
                unsafe { (*core::ptr::addr_of_mut!(crate::_generated::REFCOUNTS)).get_mut(refcount_idx) }
            {
                *refcount -= 1;
                if *refcount > 0 {
                    return;
                }
            } else {
                panic!("refcount_idx out of bounds: {}", refcount_idx)
            }
        }

        #[cfg(feature = "low-power")]
        match self.stop_mode {
            StopMode::Standby => {}
            StopMode::Stop2 => unsafe {
                REFCOUNT_STOP2 -= 1;
            },
            StopMode::Stop1 => unsafe {
                REFCOUNT_STOP1 -= 1;
            },
        }

        // clear the xxxEN bit
        let enable_ptr = self.enable_ptr();
        unsafe {
            let val = enable_ptr.read_volatile();
            enable_ptr.write_volatile(val & !(1u32 << self.enable_bit));
        }
    }

    // TODO: should this be `unsafe`?
    pub(crate) fn enable_and_reset(&self) {
        critical_section::with(|cs| self.enable_and_reset_with_cs(cs))
    }

    // TODO: should this be `unsafe`?
    pub(crate) fn disable(&self) {
        critical_section::with(|cs| self.disable_with_cs(cs))
    }

    fn reset_ptr(&self) -> Option<*mut u32> {
        if self.reset_offset_or_0xff != 0xff {
            Some(unsafe { (RCC.as_ptr() as *mut u32).add(self.reset_offset_or_0xff as _) })
        } else {
            None
        }
    }

    fn enable_ptr(&self) -> *mut u32 {
        unsafe { (RCC.as_ptr() as *mut u32).add(self.enable_offset as _) }
    }
}

#[allow(unused)]
mod util {
    use crate::time::Hertz;

    pub fn calc_pclk<D>(hclk: Hertz, ppre: D) -> (Hertz, Hertz)
    where
        Hertz: core::ops::Div<D, Output = Hertz>,
    {
        let pclk = hclk / ppre;
        let pclk_tim = if hclk == pclk { pclk } else { pclk * 2u32 };
        (pclk, pclk_tim)
    }

    pub fn all_equal<T: Eq>(mut iter: impl Iterator<Item = T>) -> bool {
        let Some(x) = iter.next() else { return true };
        if !iter.all(|y| y == x) {
            return false;
        }
        true
    }

    pub fn get_equal<T: Eq>(mut iter: impl Iterator<Item = T>) -> Result<Option<T>, ()> {
        let Some(x) = iter.next() else { return Ok(None) };
        if !iter.all(|y| y == x) {
            return Err(());
        }
        Ok(Some(x))
    }
}

/// Get the kernel clock frequency of the peripheral `T`.
///
/// # Panics
///
/// Panics if the clock is not active.
pub fn frequency<T: RccPeripheral>() -> Hertz {
    T::frequency()
}

/// Enables and resets peripheral `T`.
///
/// # Safety
///
/// Peripheral must not be in use.
// TODO: should this be `unsafe`?
pub fn enable_and_reset_with_cs<T: RccPeripheral>(cs: CriticalSection) {
    T::RCC_INFO.enable_and_reset_with_cs(cs);
}

/// Disables peripheral `T`.
///
/// # Safety
///
/// Peripheral must not be in use.
// TODO: should this be `unsafe`?
pub fn disable_with_cs<T: RccPeripheral>(cs: CriticalSection) {
    T::RCC_INFO.disable_with_cs(cs);
}

/// Enables and resets peripheral `T`.
///
/// # Safety
///
/// Peripheral must not be in use.
// TODO: should this be `unsafe`?
pub fn enable_and_reset<T: RccPeripheral>() {
    T::RCC_INFO.enable_and_reset();
}

/// Disables peripheral `T`.
///
/// # Safety
///
/// Peripheral must not be in use.
// TODO: should this be `unsafe`?
pub fn disable<T: RccPeripheral>() {
    T::RCC_INFO.disable();
}