embassy_stm32/timer/
low_level.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
//! Low-level timer driver.
//!
//! This is an unopinionated, very low-level driver for all STM32 timers. It allows direct register
//! manipulation with the `regs_*()` methods, and has utility functions that are thin wrappers
//! over the registers.
//!
//! The available functionality depends on the timer type.

use core::mem::ManuallyDrop;

use embassy_hal_internal::{into_ref, Peripheral, PeripheralRef};
// Re-export useful enums
pub use stm32_metapac::timer::vals::{FilterValue, Sms as SlaveMode, Ts as TriggerSource};

use super::*;
use crate::pac::timer::vals;
use crate::rcc;
use crate::time::Hertz;

/// Input capture mode.
#[derive(Clone, Copy)]
pub enum InputCaptureMode {
    /// Rising edge only.
    Rising,
    /// Falling edge only.
    Falling,
    /// Both rising or falling edges.
    BothEdges,
}

/// Input TI selection.
#[derive(Clone, Copy)]
pub enum InputTISelection {
    /// Normal
    Normal,
    /// Alternate
    Alternate,
    /// TRC
    TRC,
}

impl From<InputTISelection> for stm32_metapac::timer::vals::CcmrInputCcs {
    fn from(tisel: InputTISelection) -> Self {
        match tisel {
            InputTISelection::Normal => stm32_metapac::timer::vals::CcmrInputCcs::TI4,
            InputTISelection::Alternate => stm32_metapac::timer::vals::CcmrInputCcs::TI3,
            InputTISelection::TRC => stm32_metapac::timer::vals::CcmrInputCcs::TRC,
        }
    }
}

/// Timer counting mode.
#[repr(u8)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
pub enum CountingMode {
    #[default]
    /// The timer counts up to the reload value and then resets back to 0.
    EdgeAlignedUp,
    /// The timer counts down to 0 and then resets back to the reload value.
    EdgeAlignedDown,
    /// The timer counts up to the reload value and then counts back to 0.
    ///
    /// The output compare interrupt flags of channels configured in output are
    /// set when the counter is counting down.
    CenterAlignedDownInterrupts,
    /// The timer counts up to the reload value and then counts back to 0.
    ///
    /// The output compare interrupt flags of channels configured in output are
    /// set when the counter is counting up.
    CenterAlignedUpInterrupts,
    /// The timer counts up to the reload value and then counts back to 0.
    ///
    /// The output compare interrupt flags of channels configured in output are
    /// set when the counter is counting both up or down.
    CenterAlignedBothInterrupts,
}

impl CountingMode {
    /// Return whether this mode is edge-aligned (up or down).
    pub fn is_edge_aligned(&self) -> bool {
        matches!(self, CountingMode::EdgeAlignedUp | CountingMode::EdgeAlignedDown)
    }

    /// Return whether this mode is center-aligned.
    pub fn is_center_aligned(&self) -> bool {
        matches!(
            self,
            CountingMode::CenterAlignedDownInterrupts
                | CountingMode::CenterAlignedUpInterrupts
                | CountingMode::CenterAlignedBothInterrupts
        )
    }
}

impl From<CountingMode> for (vals::Cms, vals::Dir) {
    fn from(value: CountingMode) -> Self {
        match value {
            CountingMode::EdgeAlignedUp => (vals::Cms::EDGE_ALIGNED, vals::Dir::UP),
            CountingMode::EdgeAlignedDown => (vals::Cms::EDGE_ALIGNED, vals::Dir::DOWN),
            CountingMode::CenterAlignedDownInterrupts => (vals::Cms::CENTER_ALIGNED1, vals::Dir::UP),
            CountingMode::CenterAlignedUpInterrupts => (vals::Cms::CENTER_ALIGNED2, vals::Dir::UP),
            CountingMode::CenterAlignedBothInterrupts => (vals::Cms::CENTER_ALIGNED3, vals::Dir::UP),
        }
    }
}

impl From<(vals::Cms, vals::Dir)> for CountingMode {
    fn from(value: (vals::Cms, vals::Dir)) -> Self {
        match value {
            (vals::Cms::EDGE_ALIGNED, vals::Dir::UP) => CountingMode::EdgeAlignedUp,
            (vals::Cms::EDGE_ALIGNED, vals::Dir::DOWN) => CountingMode::EdgeAlignedDown,
            (vals::Cms::CENTER_ALIGNED1, _) => CountingMode::CenterAlignedDownInterrupts,
            (vals::Cms::CENTER_ALIGNED2, _) => CountingMode::CenterAlignedUpInterrupts,
            (vals::Cms::CENTER_ALIGNED3, _) => CountingMode::CenterAlignedBothInterrupts,
        }
    }
}

/// Output compare mode.
#[derive(Clone, Copy)]
pub enum OutputCompareMode {
    /// The comparison between the output compare register TIMx_CCRx and
    /// the counter TIMx_CNT has no effect on the outputs.
    /// (this mode is used to generate a timing base).
    Frozen,
    /// Set channel to active level on match. OCxREF signal is forced high when the
    /// counter TIMx_CNT matches the capture/compare register x (TIMx_CCRx).
    ActiveOnMatch,
    /// Set channel to inactive level on match. OCxREF signal is forced low when the
    /// counter TIMx_CNT matches the capture/compare register x (TIMx_CCRx).
    InactiveOnMatch,
    /// Toggle - OCxREF toggles when TIMx_CNT=TIMx_CCRx.
    Toggle,
    /// Force inactive level - OCxREF is forced low.
    ForceInactive,
    /// Force active level - OCxREF is forced high.
    ForceActive,
    /// PWM mode 1 - In upcounting, channel is active as long as TIMx_CNT<TIMx_CCRx
    /// else inactive. In downcounting, channel is inactive (OCxREF=0) as long as
    /// TIMx_CNT>TIMx_CCRx else active (OCxREF=1).
    PwmMode1,
    /// PWM mode 2 - In upcounting, channel is inactive as long as
    /// TIMx_CNT<TIMx_CCRx else active. In downcounting, channel is active as long as
    /// TIMx_CNT>TIMx_CCRx else inactive.
    PwmMode2,
    // TODO: there's more modes here depending on the chip family.
}

impl From<OutputCompareMode> for stm32_metapac::timer::vals::Ocm {
    fn from(mode: OutputCompareMode) -> Self {
        match mode {
            OutputCompareMode::Frozen => stm32_metapac::timer::vals::Ocm::FROZEN,
            OutputCompareMode::ActiveOnMatch => stm32_metapac::timer::vals::Ocm::ACTIVE_ON_MATCH,
            OutputCompareMode::InactiveOnMatch => stm32_metapac::timer::vals::Ocm::INACTIVE_ON_MATCH,
            OutputCompareMode::Toggle => stm32_metapac::timer::vals::Ocm::TOGGLE,
            OutputCompareMode::ForceInactive => stm32_metapac::timer::vals::Ocm::FORCE_INACTIVE,
            OutputCompareMode::ForceActive => stm32_metapac::timer::vals::Ocm::FORCE_ACTIVE,
            OutputCompareMode::PwmMode1 => stm32_metapac::timer::vals::Ocm::PWM_MODE1,
            OutputCompareMode::PwmMode2 => stm32_metapac::timer::vals::Ocm::PWM_MODE2,
        }
    }
}

/// Timer output pin polarity.
#[derive(Clone, Copy)]
pub enum OutputPolarity {
    /// Active high (higher duty value makes the pin spend more time high).
    ActiveHigh,
    /// Active low (higher duty value makes the pin spend more time low).
    ActiveLow,
}

impl From<OutputPolarity> for bool {
    fn from(mode: OutputPolarity) -> Self {
        match mode {
            OutputPolarity::ActiveHigh => false,
            OutputPolarity::ActiveLow => true,
        }
    }
}

/// Low-level timer driver.
pub struct Timer<'d, T: CoreInstance> {
    tim: PeripheralRef<'d, T>,
}

impl<'d, T: CoreInstance> Drop for Timer<'d, T> {
    fn drop(&mut self) {
        rcc::disable::<T>();
    }
}

impl<'d, T: CoreInstance> Timer<'d, T> {
    /// Create a new timer driver.
    pub fn new(tim: impl Peripheral<P = T> + 'd) -> Self {
        into_ref!(tim);

        rcc::enable_and_reset::<T>();

        Self { tim }
    }

    pub(crate) unsafe fn clone_unchecked(&self) -> ManuallyDrop<Self> {
        let tim = unsafe { self.tim.clone_unchecked() };
        ManuallyDrop::new(Self { tim })
    }

    /// Get access to the virutal core 16bit timer registers.
    ///
    /// Note: This works even if the timer is more capable, because registers
    /// for the less capable timers are a subset. This allows writing a driver
    /// for a given set of capabilities, and having it transparently work with
    /// more capable timers.
    pub fn regs_core(&self) -> crate::pac::timer::TimCore {
        unsafe { crate::pac::timer::TimCore::from_ptr(T::regs()) }
    }

    #[cfg(not(stm32l0))]
    fn regs_gp32_unchecked(&self) -> crate::pac::timer::TimGp32 {
        unsafe { crate::pac::timer::TimGp32::from_ptr(T::regs()) }
    }

    /// Start the timer.
    pub fn start(&self) {
        self.regs_core().cr1().modify(|r| r.set_cen(true));
    }

    /// Stop the timer.
    pub fn stop(&self) {
        self.regs_core().cr1().modify(|r| r.set_cen(false));
    }

    /// Reset the counter value to 0
    pub fn reset(&self) {
        self.regs_core().cnt().write(|r| r.set_cnt(0));
    }

    /// Set the frequency of how many times per second the timer counts up to the max value or down to 0.
    ///
    /// This means that in the default edge-aligned mode,
    /// the timer counter will wrap around at the same frequency as is being set.
    /// In center-aligned mode (which not all timers support), the wrap-around frequency is effectively halved
    /// because it needs to count up and down.
    pub fn set_frequency(&self, frequency: Hertz) {
        match T::BITS {
            TimerBits::Bits16 => {
                self.set_frequency_internal(frequency, 16);
            }
            #[cfg(not(stm32l0))]
            TimerBits::Bits32 => {
                self.set_frequency_internal(frequency, 32);
            }
        }
    }

    pub(crate) fn set_frequency_internal(&self, frequency: Hertz, max_divide_by_bits: u8) {
        let f = frequency.0;
        assert!(f > 0);
        let timer_f = T::frequency().0;

        let pclk_ticks_per_timer_period = (timer_f / f) as u64;
        let psc: u16 = unwrap!(((pclk_ticks_per_timer_period - 1) / (1 << max_divide_by_bits)).try_into());
        let divide_by = pclk_ticks_per_timer_period / (u64::from(psc) + 1);

        match T::BITS {
            TimerBits::Bits16 => {
                // the timer counts `0..=arr`, we want it to count `0..divide_by`
                let arr = unwrap!(u16::try_from(divide_by - 1));

                let regs = self.regs_core();
                regs.psc().write_value(psc);
                regs.arr().write(|r| r.set_arr(arr));

                regs.cr1().modify(|r| r.set_urs(vals::Urs::COUNTER_ONLY));
                regs.egr().write(|r| r.set_ug(true));
                regs.cr1().modify(|r| r.set_urs(vals::Urs::ANY_EVENT));
            }
            #[cfg(not(stm32l0))]
            TimerBits::Bits32 => {
                // the timer counts `0..=arr`, we want it to count `0..divide_by`
                let arr: u32 = unwrap!(u32::try_from(divide_by - 1));

                let regs = self.regs_gp32_unchecked();
                regs.psc().write_value(psc);
                regs.arr().write_value(arr);

                regs.cr1().modify(|r| r.set_urs(vals::Urs::COUNTER_ONLY));
                regs.egr().write(|r| r.set_ug(true));
                regs.cr1().modify(|r| r.set_urs(vals::Urs::ANY_EVENT));
            }
        }
    }

    /// Set tick frequency.
    pub fn set_tick_freq(&mut self, freq: Hertz) {
        let f = freq;
        assert!(f.0 > 0);
        let timer_f = self.get_clock_frequency();

        let pclk_ticks_per_timer_period = timer_f / f;
        let psc: u16 = unwrap!((pclk_ticks_per_timer_period - 1).try_into());

        let regs = self.regs_core();
        regs.psc().write_value(psc);

        // Generate an Update Request
        regs.egr().write(|r| r.set_ug(true));
    }

    /// Clear update interrupt.
    ///
    /// Returns whether the update interrupt flag was set.
    pub fn clear_update_interrupt(&self) -> bool {
        let regs = self.regs_core();
        let sr = regs.sr().read();
        if sr.uif() {
            regs.sr().modify(|r| {
                r.set_uif(false);
            });
            true
        } else {
            false
        }
    }

    /// Enable/disable the update interrupt.
    pub fn enable_update_interrupt(&self, enable: bool) {
        self.regs_core().dier().modify(|r| r.set_uie(enable));
    }

    /// Enable/disable autoreload preload.
    pub fn set_autoreload_preload(&self, enable: bool) {
        self.regs_core().cr1().modify(|r| r.set_arpe(enable));
    }

    /// Get the timer frequency.
    pub fn get_frequency(&self) -> Hertz {
        let timer_f = T::frequency();

        match T::BITS {
            TimerBits::Bits16 => {
                let regs = self.regs_core();
                let arr = regs.arr().read().arr();
                let psc = regs.psc().read();

                timer_f / arr / (psc + 1)
            }
            #[cfg(not(stm32l0))]
            TimerBits::Bits32 => {
                let regs = self.regs_gp32_unchecked();
                let arr = regs.arr().read();
                let psc = regs.psc().read();

                timer_f / arr / (psc + 1)
            }
        }
    }

    /// Get the clock frequency of the timer (before prescaler is applied).
    pub fn get_clock_frequency(&self) -> Hertz {
        T::frequency()
    }
}

impl<'d, T: BasicNoCr2Instance> Timer<'d, T> {
    /// Get access to the Baisc 16bit timer registers.
    ///
    /// Note: This works even if the timer is more capable, because registers
    /// for the less capable timers are a subset. This allows writing a driver
    /// for a given set of capabilities, and having it transparently work with
    /// more capable timers.
    pub fn regs_basic_no_cr2(&self) -> crate::pac::timer::TimBasicNoCr2 {
        unsafe { crate::pac::timer::TimBasicNoCr2::from_ptr(T::regs()) }
    }

    /// Enable/disable the update dma.
    pub fn enable_update_dma(&self, enable: bool) {
        self.regs_basic_no_cr2().dier().modify(|r| r.set_ude(enable));
    }

    /// Get the update dma enable/disable state.
    pub fn get_update_dma_state(&self) -> bool {
        self.regs_basic_no_cr2().dier().read().ude()
    }
}

impl<'d, T: BasicInstance> Timer<'d, T> {
    /// Get access to the Baisc 16bit timer registers.
    ///
    /// Note: This works even if the timer is more capable, because registers
    /// for the less capable timers are a subset. This allows writing a driver
    /// for a given set of capabilities, and having it transparently work with
    /// more capable timers.
    pub fn regs_basic(&self) -> crate::pac::timer::TimBasic {
        unsafe { crate::pac::timer::TimBasic::from_ptr(T::regs()) }
    }
}

impl<'d, T: GeneralInstance1Channel> Timer<'d, T> {
    /// Get access to the general purpose 1 channel 16bit timer registers.
    ///
    /// Note: This works even if the timer is more capable, because registers
    /// for the less capable timers are a subset. This allows writing a driver
    /// for a given set of capabilities, and having it transparently work with
    /// more capable timers.
    pub fn regs_1ch(&self) -> crate::pac::timer::Tim1ch {
        unsafe { crate::pac::timer::Tim1ch::from_ptr(T::regs()) }
    }

    /// Set clock divider.
    pub fn set_clock_division(&self, ckd: vals::Ckd) {
        self.regs_1ch().cr1().modify(|r| r.set_ckd(ckd));
    }

    /// Get max compare value. This depends on the timer frequency and the clock frequency from RCC.
    pub fn get_max_compare_value(&self) -> u32 {
        match T::BITS {
            TimerBits::Bits16 => self.regs_1ch().arr().read().arr() as u32,
            #[cfg(not(stm32l0))]
            TimerBits::Bits32 => self.regs_gp32_unchecked().arr().read(),
        }
    }
}

impl<'d, T: GeneralInstance2Channel> Timer<'d, T> {
    /// Get access to the general purpose 2 channel 16bit timer registers.
    ///
    /// Note: This works even if the timer is more capable, because registers
    /// for the less capable timers are a subset. This allows writing a driver
    /// for a given set of capabilities, and having it transparently work with
    /// more capable timers.
    pub fn regs_2ch(&self) -> crate::pac::timer::Tim2ch {
        unsafe { crate::pac::timer::Tim2ch::from_ptr(T::regs()) }
    }
}

impl<'d, T: GeneralInstance4Channel> Timer<'d, T> {
    /// Get access to the general purpose 16bit timer registers.
    ///
    /// Note: This works even if the timer is more capable, because registers
    /// for the less capable timers are a subset. This allows writing a driver
    /// for a given set of capabilities, and having it transparently work with
    /// more capable timers.
    pub fn regs_gp16(&self) -> crate::pac::timer::TimGp16 {
        unsafe { crate::pac::timer::TimGp16::from_ptr(T::regs()) }
    }

    /// Enable timer outputs.
    pub fn enable_outputs(&self) {
        self.tim.enable_outputs()
    }

    /// Set counting mode.
    pub fn set_counting_mode(&self, mode: CountingMode) {
        let (cms, dir) = mode.into();

        let timer_enabled = self.regs_core().cr1().read().cen();
        // Changing from edge aligned to center aligned (and vice versa) is not allowed while the timer is running.
        // Changing direction is discouraged while the timer is running.
        assert!(!timer_enabled);

        self.regs_gp16().cr1().modify(|r| r.set_dir(dir));
        self.regs_gp16().cr1().modify(|r| r.set_cms(cms))
    }

    /// Get counting mode.
    pub fn get_counting_mode(&self) -> CountingMode {
        let cr1 = self.regs_gp16().cr1().read();
        (cr1.cms(), cr1.dir()).into()
    }

    /// Set input capture filter.
    pub fn set_input_capture_filter(&self, channel: Channel, icf: vals::FilterValue) {
        let raw_channel = channel.index();
        self.regs_gp16()
            .ccmr_input(raw_channel / 2)
            .modify(|r| r.set_icf(raw_channel % 2, icf));
    }

    /// Clear input interrupt.
    pub fn clear_input_interrupt(&self, channel: Channel) {
        self.regs_gp16().sr().modify(|r| r.set_ccif(channel.index(), false));
    }

    /// Get input interrupt.
    pub fn get_input_interrupt(&self, channel: Channel) -> bool {
        self.regs_gp16().sr().read().ccif(channel.index())
    }

    /// Enable input interrupt.
    pub fn enable_input_interrupt(&self, channel: Channel, enable: bool) {
        self.regs_gp16().dier().modify(|r| r.set_ccie(channel.index(), enable));
    }

    /// Set input capture prescaler.
    pub fn set_input_capture_prescaler(&self, channel: Channel, factor: u8) {
        let raw_channel = channel.index();
        self.regs_gp16()
            .ccmr_input(raw_channel / 2)
            .modify(|r| r.set_icpsc(raw_channel % 2, factor));
    }

    /// Set input TI selection.
    pub fn set_input_ti_selection(&self, channel: Channel, tisel: InputTISelection) {
        let raw_channel = channel.index();
        self.regs_gp16()
            .ccmr_input(raw_channel / 2)
            .modify(|r| r.set_ccs(raw_channel % 2, tisel.into()));
    }

    /// Set input capture mode.
    pub fn set_input_capture_mode(&self, channel: Channel, mode: InputCaptureMode) {
        self.regs_gp16().ccer().modify(|r| match mode {
            InputCaptureMode::Rising => {
                r.set_ccnp(channel.index(), false);
                r.set_ccp(channel.index(), false);
            }
            InputCaptureMode::Falling => {
                r.set_ccnp(channel.index(), false);
                r.set_ccp(channel.index(), true);
            }
            InputCaptureMode::BothEdges => {
                r.set_ccnp(channel.index(), true);
                r.set_ccp(channel.index(), true);
            }
        });
    }

    /// Set output compare mode.
    pub fn set_output_compare_mode(&self, channel: Channel, mode: OutputCompareMode) {
        let raw_channel: usize = channel.index();
        self.regs_gp16()
            .ccmr_output(raw_channel / 2)
            .modify(|w| w.set_ocm(raw_channel % 2, mode.into()));
    }

    /// Set output polarity.
    pub fn set_output_polarity(&self, channel: Channel, polarity: OutputPolarity) {
        self.regs_gp16()
            .ccer()
            .modify(|w| w.set_ccp(channel.index(), polarity.into()));
    }

    /// Enable/disable a channel.
    pub fn enable_channel(&self, channel: Channel, enable: bool) {
        self.regs_gp16().ccer().modify(|w| w.set_cce(channel.index(), enable));
    }

    /// Get enable/disable state of a channel
    pub fn get_channel_enable_state(&self, channel: Channel) -> bool {
        self.regs_gp16().ccer().read().cce(channel.index())
    }

    /// Set compare value for a channel.
    pub fn set_compare_value(&self, channel: Channel, value: u32) {
        match T::BITS {
            TimerBits::Bits16 => {
                let value = unwrap!(u16::try_from(value));
                self.regs_gp16().ccr(channel.index()).modify(|w| w.set_ccr(value));
            }
            #[cfg(not(stm32l0))]
            TimerBits::Bits32 => {
                self.regs_gp32_unchecked().ccr(channel.index()).write_value(value);
            }
        }
    }

    /// Get compare value for a channel.
    pub fn get_compare_value(&self, channel: Channel) -> u32 {
        match T::BITS {
            TimerBits::Bits16 => self.regs_gp16().ccr(channel.index()).read().ccr() as u32,
            #[cfg(not(stm32l0))]
            TimerBits::Bits32 => self.regs_gp32_unchecked().ccr(channel.index()).read(),
        }
    }

    /// Get capture value for a channel.
    pub fn get_capture_value(&self, channel: Channel) -> u32 {
        self.get_compare_value(channel)
    }

    /// Set output compare preload.
    pub fn set_output_compare_preload(&self, channel: Channel, preload: bool) {
        let channel_index = channel.index();
        self.regs_gp16()
            .ccmr_output(channel_index / 2)
            .modify(|w| w.set_ocpe(channel_index % 2, preload));
    }

    /// Get capture compare DMA selection
    pub fn get_cc_dma_selection(&self) -> vals::Ccds {
        self.regs_gp16().cr2().read().ccds()
    }

    /// Set capture compare DMA selection
    pub fn set_cc_dma_selection(&self, ccds: vals::Ccds) {
        self.regs_gp16().cr2().modify(|w| w.set_ccds(ccds))
    }

    /// Get capture compare DMA enable state
    pub fn get_cc_dma_enable_state(&self, channel: Channel) -> bool {
        self.regs_gp16().dier().read().ccde(channel.index())
    }

    /// Set capture compare DMA enable state
    pub fn set_cc_dma_enable_state(&self, channel: Channel, ccde: bool) {
        self.regs_gp16().dier().modify(|w| w.set_ccde(channel.index(), ccde))
    }

    /// Set Timer Slave Mode
    pub fn set_slave_mode(&self, sms: SlaveMode) {
        self.regs_gp16().smcr().modify(|r| r.set_sms(sms));
    }

    /// Set Timer Trigger Source
    pub fn set_trigger_source(&self, ts: TriggerSource) {
        self.regs_gp16().smcr().modify(|r| r.set_ts(ts));
    }
}

#[cfg(not(stm32l0))]
impl<'d, T: GeneralInstance32bit4Channel> Timer<'d, T> {
    /// Get access to the general purpose 32bit timer registers.
    ///
    /// Note: This works even if the timer is more capable, because registers
    /// for the less capable timers are a subset. This allows writing a driver
    /// for a given set of capabilities, and having it transparently work with
    /// more capable timers.
    pub fn regs_gp32(&self) -> crate::pac::timer::TimGp32 {
        unsafe { crate::pac::timer::TimGp32::from_ptr(T::regs()) }
    }
}

#[cfg(not(stm32l0))]
impl<'d, T: AdvancedInstance1Channel> Timer<'d, T> {
    /// Get access to the general purpose 1 channel with one complementary 16bit timer registers.
    ///
    /// Note: This works even if the timer is more capable, because registers
    /// for the less capable timers are a subset. This allows writing a driver
    /// for a given set of capabilities, and having it transparently work with
    /// more capable timers.
    pub fn regs_1ch_cmp(&self) -> crate::pac::timer::Tim1chCmp {
        unsafe { crate::pac::timer::Tim1chCmp::from_ptr(T::regs()) }
    }

    /// Set clock divider for the dead time.
    pub fn set_dead_time_clock_division(&self, value: vals::Ckd) {
        self.regs_1ch_cmp().cr1().modify(|w| w.set_ckd(value));
    }

    /// Set dead time, as a fraction of the max duty value.
    pub fn set_dead_time_value(&self, value: u8) {
        self.regs_1ch_cmp().bdtr().modify(|w| w.set_dtg(value));
    }

    /// Set state of MOE-bit in BDTR register to en-/disable output
    pub fn set_moe(&self, enable: bool) {
        self.regs_1ch_cmp().bdtr().modify(|w| w.set_moe(enable));
    }
}

#[cfg(not(stm32l0))]
impl<'d, T: AdvancedInstance2Channel> Timer<'d, T> {
    /// Get access to the general purpose 2 channel with one complementary 16bit timer registers.
    ///
    /// Note: This works even if the timer is more capable, because registers
    /// for the less capable timers are a subset. This allows writing a driver
    /// for a given set of capabilities, and having it transparently work with
    /// more capable timers.
    pub fn regs_2ch_cmp(&self) -> crate::pac::timer::Tim2chCmp {
        unsafe { crate::pac::timer::Tim2chCmp::from_ptr(T::regs()) }
    }
}

#[cfg(not(stm32l0))]
impl<'d, T: AdvancedInstance4Channel> Timer<'d, T> {
    /// Get access to the advanced timer registers.
    pub fn regs_advanced(&self) -> crate::pac::timer::TimAdv {
        unsafe { crate::pac::timer::TimAdv::from_ptr(T::regs()) }
    }

    /// Set complementary output polarity.
    pub fn set_complementary_output_polarity(&self, channel: Channel, polarity: OutputPolarity) {
        self.regs_advanced()
            .ccer()
            .modify(|w| w.set_ccnp(channel.index(), polarity.into()));
    }

    /// Enable/disable a complementary channel.
    pub fn enable_complementary_channel(&self, channel: Channel, enable: bool) {
        self.regs_advanced()
            .ccer()
            .modify(|w| w.set_ccne(channel.index(), enable));
    }
}