embassy_stm32/adc/
v4.rs

1#[cfg(not(stm32u5))]
2use pac::adc::vals::{Adcaldif, Boost};
3#[allow(unused)]
4use pac::adc::vals::{Adstp, Difsel, Dmngt, Exten, Pcsel};
5use pac::adccommon::vals::Presc;
6
7use super::{
8    blocking_delay_us, Adc, AdcChannel, AnyAdcChannel, Instance, Resolution, RxDma, SampleTime, SealedAdcChannel,
9};
10use crate::dma::Transfer;
11use crate::time::Hertz;
12use crate::{pac, rcc, Peripheral};
13
14/// Default VREF voltage used for sample conversion to millivolts.
15pub const VREF_DEFAULT_MV: u32 = 3300;
16/// VREF voltage used for factory calibration of VREFINTCAL register.
17pub const VREF_CALIB_MV: u32 = 3300;
18
19/// Max single ADC operation clock frequency
20#[cfg(stm32g4)]
21const MAX_ADC_CLK_FREQ: Hertz = Hertz::mhz(60);
22#[cfg(stm32h7)]
23const MAX_ADC_CLK_FREQ: Hertz = Hertz::mhz(50);
24#[cfg(stm32u5)]
25const MAX_ADC_CLK_FREQ: Hertz = Hertz::mhz(55);
26
27#[cfg(stm32g4)]
28const VREF_CHANNEL: u8 = 18;
29#[cfg(stm32g4)]
30const TEMP_CHANNEL: u8 = 16;
31
32#[cfg(stm32h7)]
33const VREF_CHANNEL: u8 = 19;
34#[cfg(stm32h7)]
35const TEMP_CHANNEL: u8 = 18;
36
37// TODO this should be 14 for H7a/b/35
38#[cfg(not(stm32u5))]
39const VBAT_CHANNEL: u8 = 17;
40
41#[cfg(stm32u5)]
42const VREF_CHANNEL: u8 = 0;
43#[cfg(stm32u5)]
44const TEMP_CHANNEL: u8 = 19;
45#[cfg(stm32u5)]
46const VBAT_CHANNEL: u8 = 18;
47
48// NOTE: Vrefint/Temperature/Vbat are not available on all ADCs, this currently cannot be modeled with stm32-data, so these are available from the software on all ADCs
49/// Internal voltage reference channel.
50pub struct VrefInt;
51impl<T: Instance> AdcChannel<T> for VrefInt {}
52impl<T: Instance> SealedAdcChannel<T> for VrefInt {
53    fn channel(&self) -> u8 {
54        VREF_CHANNEL
55    }
56}
57
58/// Internal temperature channel.
59pub struct Temperature;
60impl<T: Instance> AdcChannel<T> for Temperature {}
61impl<T: Instance> SealedAdcChannel<T> for Temperature {
62    fn channel(&self) -> u8 {
63        TEMP_CHANNEL
64    }
65}
66
67/// Internal battery voltage channel.
68pub struct Vbat;
69impl<T: Instance> AdcChannel<T> for Vbat {}
70impl<T: Instance> SealedAdcChannel<T> for Vbat {
71    fn channel(&self) -> u8 {
72        VBAT_CHANNEL
73    }
74}
75
76// NOTE (unused): The prescaler enum closely copies the hardware capabilities,
77// but high prescaling doesn't make a lot of sense in the current implementation and is ommited.
78#[allow(unused)]
79enum Prescaler {
80    NotDivided,
81    DividedBy2,
82    DividedBy4,
83    DividedBy6,
84    DividedBy8,
85    DividedBy10,
86    DividedBy12,
87    DividedBy16,
88    DividedBy32,
89    DividedBy64,
90    DividedBy128,
91    DividedBy256,
92}
93
94impl Prescaler {
95    fn from_ker_ck(frequency: Hertz) -> Self {
96        let raw_prescaler = frequency.0 / MAX_ADC_CLK_FREQ.0;
97        match raw_prescaler {
98            0 => Self::NotDivided,
99            1 => Self::DividedBy2,
100            2..=3 => Self::DividedBy4,
101            4..=5 => Self::DividedBy6,
102            6..=7 => Self::DividedBy8,
103            8..=9 => Self::DividedBy10,
104            10..=11 => Self::DividedBy12,
105            _ => unimplemented!(),
106        }
107    }
108
109    fn divisor(&self) -> u32 {
110        match self {
111            Prescaler::NotDivided => 1,
112            Prescaler::DividedBy2 => 2,
113            Prescaler::DividedBy4 => 4,
114            Prescaler::DividedBy6 => 6,
115            Prescaler::DividedBy8 => 8,
116            Prescaler::DividedBy10 => 10,
117            Prescaler::DividedBy12 => 12,
118            Prescaler::DividedBy16 => 16,
119            Prescaler::DividedBy32 => 32,
120            Prescaler::DividedBy64 => 64,
121            Prescaler::DividedBy128 => 128,
122            Prescaler::DividedBy256 => 256,
123        }
124    }
125
126    fn presc(&self) -> Presc {
127        match self {
128            Prescaler::NotDivided => Presc::DIV1,
129            Prescaler::DividedBy2 => Presc::DIV2,
130            Prescaler::DividedBy4 => Presc::DIV4,
131            Prescaler::DividedBy6 => Presc::DIV6,
132            Prescaler::DividedBy8 => Presc::DIV8,
133            Prescaler::DividedBy10 => Presc::DIV10,
134            Prescaler::DividedBy12 => Presc::DIV12,
135            Prescaler::DividedBy16 => Presc::DIV16,
136            Prescaler::DividedBy32 => Presc::DIV32,
137            Prescaler::DividedBy64 => Presc::DIV64,
138            Prescaler::DividedBy128 => Presc::DIV128,
139            Prescaler::DividedBy256 => Presc::DIV256,
140        }
141    }
142}
143
144/// Number of samples used for averaging.
145pub enum Averaging {
146    Disabled,
147    Samples2,
148    Samples4,
149    Samples8,
150    Samples16,
151    Samples32,
152    Samples64,
153    Samples128,
154    Samples256,
155    Samples512,
156    Samples1024,
157}
158
159impl<'d, T: Instance> Adc<'d, T> {
160    /// Create a new ADC driver.
161    pub fn new(adc: impl Peripheral<P = T> + 'd) -> Self {
162        embassy_hal_internal::into_ref!(adc);
163        rcc::enable_and_reset::<T>();
164
165        let prescaler = Prescaler::from_ker_ck(T::frequency());
166
167        T::common_regs().ccr().modify(|w| w.set_presc(prescaler.presc()));
168
169        let frequency = Hertz(T::frequency().0 / prescaler.divisor());
170        info!("ADC frequency set to {} Hz", frequency.0);
171
172        if frequency > MAX_ADC_CLK_FREQ {
173            panic!("Maximal allowed frequency for the ADC is {} MHz and it varies with different packages, refer to ST docs for more information.", MAX_ADC_CLK_FREQ.0 /  1_000_000 );
174        }
175
176        #[cfg(stm32h7)]
177        {
178            let boost = if frequency < Hertz::khz(6_250) {
179                Boost::LT6_25
180            } else if frequency < Hertz::khz(12_500) {
181                Boost::LT12_5
182            } else if frequency < Hertz::mhz(25) {
183                Boost::LT25
184            } else {
185                Boost::LT50
186            };
187            T::regs().cr().modify(|w| w.set_boost(boost));
188        }
189        let mut s = Self {
190            adc,
191            sample_time: SampleTime::from_bits(0),
192        };
193        s.power_up();
194        s.configure_differential_inputs();
195
196        s.calibrate();
197        blocking_delay_us(1);
198
199        s.enable();
200        s.configure();
201
202        s
203    }
204
205    fn power_up(&mut self) {
206        T::regs().cr().modify(|reg| {
207            reg.set_deeppwd(false);
208            reg.set_advregen(true);
209        });
210
211        blocking_delay_us(10);
212    }
213
214    fn configure_differential_inputs(&mut self) {
215        T::regs().difsel().modify(|w| {
216            for n in 0..20 {
217                w.set_difsel(n, Difsel::SINGLE_ENDED);
218            }
219        });
220    }
221
222    fn calibrate(&mut self) {
223        T::regs().cr().modify(|w| {
224            #[cfg(not(adc_u5))]
225            w.set_adcaldif(Adcaldif::SINGLE_ENDED);
226            w.set_adcallin(true);
227        });
228
229        T::regs().cr().modify(|w| w.set_adcal(true));
230
231        while T::regs().cr().read().adcal() {}
232    }
233
234    fn enable(&mut self) {
235        T::regs().isr().write(|w| w.set_adrdy(true));
236        T::regs().cr().modify(|w| w.set_aden(true));
237        while !T::regs().isr().read().adrdy() {}
238        T::regs().isr().write(|w| w.set_adrdy(true));
239    }
240
241    fn configure(&mut self) {
242        // single conversion mode, software trigger
243        T::regs().cfgr().modify(|w| {
244            w.set_cont(false);
245            w.set_exten(Exten::DISABLED);
246        });
247    }
248
249    /// Enable reading the voltage reference internal channel.
250    pub fn enable_vrefint(&self) -> VrefInt {
251        T::common_regs().ccr().modify(|reg| {
252            reg.set_vrefen(true);
253        });
254
255        VrefInt {}
256    }
257
258    /// Enable reading the temperature internal channel.
259    pub fn enable_temperature(&self) -> Temperature {
260        T::common_regs().ccr().modify(|reg| {
261            reg.set_vsenseen(true);
262        });
263
264        Temperature {}
265    }
266
267    /// Enable reading the vbat internal channel.
268    pub fn enable_vbat(&self) -> Vbat {
269        T::common_regs().ccr().modify(|reg| {
270            reg.set_vbaten(true);
271        });
272
273        Vbat {}
274    }
275
276    /// Set the ADC sample time.
277    pub fn set_sample_time(&mut self, sample_time: SampleTime) {
278        self.sample_time = sample_time;
279    }
280
281    /// Get the ADC sample time.
282    pub fn sample_time(&self) -> SampleTime {
283        self.sample_time
284    }
285
286    /// Set the ADC resolution.
287    pub fn set_resolution(&mut self, resolution: Resolution) {
288        T::regs().cfgr().modify(|reg| reg.set_res(resolution.into()));
289    }
290
291    /// Set hardware averaging.
292    pub fn set_averaging(&mut self, averaging: Averaging) {
293        let (enable, samples, right_shift) = match averaging {
294            Averaging::Disabled => (false, 0, 0),
295            Averaging::Samples2 => (true, 1, 1),
296            Averaging::Samples4 => (true, 3, 2),
297            Averaging::Samples8 => (true, 7, 3),
298            Averaging::Samples16 => (true, 15, 4),
299            Averaging::Samples32 => (true, 31, 5),
300            Averaging::Samples64 => (true, 63, 6),
301            Averaging::Samples128 => (true, 127, 7),
302            Averaging::Samples256 => (true, 255, 8),
303            Averaging::Samples512 => (true, 511, 9),
304            Averaging::Samples1024 => (true, 1023, 10),
305        };
306
307        T::regs().cfgr2().modify(|reg| {
308            reg.set_rovse(enable);
309            reg.set_osvr(samples);
310            reg.set_ovss(right_shift);
311        })
312    }
313
314    /// Perform a single conversion.
315    fn convert(&mut self) -> u16 {
316        T::regs().isr().modify(|reg| {
317            reg.set_eos(true);
318            reg.set_eoc(true);
319        });
320
321        // Start conversion
322        T::regs().cr().modify(|reg| {
323            reg.set_adstart(true);
324        });
325
326        while !T::regs().isr().read().eos() {
327            // spin
328        }
329
330        T::regs().dr().read().0 as u16
331    }
332
333    /// Read an ADC channel.
334    pub fn blocking_read(&mut self, channel: &mut impl AdcChannel<T>) -> u16 {
335        self.read_channel(channel)
336    }
337
338    /// Read one or multiple ADC channels using DMA.
339    ///
340    /// `sequence` iterator and `readings` must have the same length.
341    ///
342    /// Example
343    /// ```rust,ignore
344    /// use embassy_stm32::adc::{Adc, AdcChannel}
345    ///
346    /// let mut adc = Adc::new(p.ADC1);
347    /// let mut adc_pin0 = p.PA0.degrade_adc();
348    /// let mut adc_pin2 = p.PA2.degrade_adc();
349    /// let mut measurements = [0u16; 2];
350    ///
351    /// adc.read_async(
352    ///     p.DMA2_CH0,
353    ///     [
354    ///         (&mut *adc_pin0, SampleTime::CYCLES112),
355    ///         (&mut *adc_pin2, SampleTime::CYCLES112),
356    ///     ]
357    ///     .into_iter(),
358    ///     &mut measurements,
359    /// )
360    /// .await;
361    /// defmt::info!("measurements: {}", measurements);
362    /// ```
363    pub async fn read(
364        &mut self,
365        rx_dma: &mut impl RxDma<T>,
366        sequence: impl ExactSizeIterator<Item = (&mut AnyAdcChannel<T>, SampleTime)>,
367        readings: &mut [u16],
368    ) {
369        assert!(sequence.len() != 0, "Asynchronous read sequence cannot be empty");
370        assert!(
371            sequence.len() == readings.len(),
372            "Sequence length must be equal to readings length"
373        );
374        assert!(
375            sequence.len() <= 16,
376            "Asynchronous read sequence cannot be more than 16 in length"
377        );
378
379        // Ensure no conversions are ongoing
380        Self::cancel_conversions();
381
382        // Set sequence length
383        T::regs().sqr1().modify(|w| {
384            w.set_l(sequence.len() as u8 - 1);
385        });
386
387        // Configure channels and ranks
388        for (i, (channel, sample_time)) in sequence.enumerate() {
389            Self::configure_channel(channel, sample_time);
390            match i {
391                0..=3 => {
392                    T::regs().sqr1().modify(|w| {
393                        w.set_sq(i, channel.channel());
394                    });
395                }
396                4..=8 => {
397                    T::regs().sqr2().modify(|w| {
398                        w.set_sq(i - 4, channel.channel());
399                    });
400                }
401                9..=13 => {
402                    T::regs().sqr3().modify(|w| {
403                        w.set_sq(i - 9, channel.channel());
404                    });
405                }
406                14..=15 => {
407                    T::regs().sqr4().modify(|w| {
408                        w.set_sq(i - 14, channel.channel());
409                    });
410                }
411                _ => unreachable!(),
412            }
413        }
414
415        // Set continuous mode with oneshot dma.
416        // Clear overrun flag before starting transfer.
417
418        T::regs().isr().modify(|reg| {
419            reg.set_ovr(true);
420        });
421        T::regs().cfgr().modify(|reg| {
422            reg.set_cont(true);
423            reg.set_dmngt(Dmngt::DMA_ONE_SHOT);
424        });
425
426        let request = rx_dma.request();
427        let transfer = unsafe {
428            Transfer::new_read(
429                rx_dma,
430                request,
431                T::regs().dr().as_ptr() as *mut u16,
432                readings,
433                Default::default(),
434            )
435        };
436
437        // Start conversion
438        T::regs().cr().modify(|reg| {
439            reg.set_adstart(true);
440        });
441
442        // Wait for conversion sequence to finish.
443        transfer.await;
444
445        // Ensure conversions are finished.
446        Self::cancel_conversions();
447
448        // Reset configuration.
449        T::regs().cfgr().modify(|reg| {
450            reg.set_cont(false);
451            reg.set_dmngt(Dmngt::from_bits(0));
452        });
453    }
454
455    fn configure_channel(channel: &mut impl AdcChannel<T>, sample_time: SampleTime) {
456        channel.setup();
457
458        let channel = channel.channel();
459
460        Self::set_channel_sample_time(channel, sample_time);
461
462        #[cfg(any(stm32h7, stm32u5))]
463        {
464            T::regs().cfgr2().modify(|w| w.set_lshift(0));
465            T::regs()
466                .pcsel()
467                .modify(|w| w.set_pcsel(channel as _, Pcsel::PRESELECTED));
468        }
469    }
470
471    fn read_channel(&mut self, channel: &mut impl AdcChannel<T>) -> u16 {
472        Self::configure_channel(channel, self.sample_time);
473
474        T::regs().sqr1().modify(|reg| {
475            reg.set_sq(0, channel.channel());
476            reg.set_l(0);
477        });
478
479        self.convert()
480    }
481
482    fn set_channel_sample_time(ch: u8, sample_time: SampleTime) {
483        let sample_time = sample_time.into();
484        if ch <= 9 {
485            T::regs().smpr(0).modify(|reg| reg.set_smp(ch as _, sample_time));
486        } else {
487            T::regs().smpr(1).modify(|reg| reg.set_smp((ch - 10) as _, sample_time));
488        }
489    }
490
491    fn cancel_conversions() {
492        if T::regs().cr().read().adstart() && !T::regs().cr().read().addis() {
493            T::regs().cr().modify(|reg| {
494                reg.set_adstp(Adstp::STOP);
495            });
496            while T::regs().cr().read().adstart() {}
497        }
498    }
499}