embassy_stm32/spdifrx/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
//! S/PDIF receiver
#![macro_use]
#![cfg_attr(gpdma, allow(unused))]

use core::marker::PhantomData;

use embassy_hal_internal::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;

use crate::dma::ringbuffer::Error as RingbufferError;
pub use crate::dma::word;
#[cfg(not(gpdma))]
use crate::dma::ReadableRingBuffer;
use crate::dma::{Channel, TransferOptions};
use crate::gpio::{AfType, AnyPin, Pull, SealedPin as _};
use crate::interrupt::typelevel::Interrupt;
use crate::pac::spdifrx::Spdifrx as Regs;
use crate::rcc::{RccInfo, SealedRccPeripheral};
use crate::{interrupt, peripherals, Peripheral};

/// Possible S/PDIF preamble types.
#[allow(dead_code)]
#[repr(u8)]
enum PreambleType {
    Unused = 0x00,
    /// The preamble changes to preamble “B” once every 192 frames to identify the start of the block structure used to
    /// organize the channel status and user information.
    B = 0x01,
    /// The first sub-frame (left or “A” channel in stereophonic operation and primary channel in monophonic operation)
    /// normally starts with preamble “M”
    M = 0x02,
    /// The second sub-frame (right or “B” channel in stereophonic operation and secondary channel in monophonic
    /// operation) always starts with preamble “W”.
    W = 0x03,
}

macro_rules! new_spdifrx_pin {
    ($name:ident, $af_type:expr) => {{
        let pin = $name.into_ref();
        let input_sel = pin.input_sel();
        pin.set_as_af(pin.af_num(), $af_type);
        (Some(pin.map_into()), input_sel)
    }};
}

macro_rules! impl_spdifrx_pin {
    ($inst:ident, $pin:ident, $af:expr, $sel:expr) => {
        impl crate::spdifrx::InPin<peripherals::$inst> for crate::peripherals::$pin {
            fn af_num(&self) -> u8 {
                $af
            }
            fn input_sel(&self) -> u8 {
                $sel
            }
        }
    };
}

/// Ring-buffered SPDIFRX driver.
///
/// Data is read by DMAs and stored in a ring buffer.
#[cfg(not(gpdma))]
pub struct Spdifrx<'d, T: Instance> {
    _peri: PeripheralRef<'d, T>,
    spdifrx_in: Option<PeripheralRef<'d, AnyPin>>,
    data_ring_buffer: ReadableRingBuffer<'d, u32>,
}

/// Gives the address of the data register.
fn dr_address(r: Regs) -> *mut u32 {
    #[cfg(spdifrx_v1)]
    let address = r.dr().as_ptr() as _;
    #[cfg(spdifrx_h7)]
    let address = r.fmt0_dr().as_ptr() as _; // All fmtx_dr() implementations have the same address.

    return address;
}

/// Gives the address of the channel status register.
#[allow(unused)]
fn csr_address(r: Regs) -> *mut u32 {
    r.csr().as_ptr() as _
}

/// Select the channel for capturing control information.
pub enum ControlChannelSelection {
    /// Capture control info from channel A.
    A,
    /// Capture control info from channel B.
    B,
}

/// Configuration options for the SPDIFRX driver.
pub struct Config {
    /// Select the channel for capturing control information.
    pub control_channel_selection: ControlChannelSelection,
}

/// S/PDIF errors.
#[derive(Debug)]
pub enum Error {
    /// DMA overrun error.
    RingbufferError(RingbufferError),
    /// Left/right channel synchronization error.
    ChannelSyncError,
}

impl From<RingbufferError> for Error {
    fn from(error: RingbufferError) -> Self {
        Self::RingbufferError(error)
    }
}

impl Default for Config {
    fn default() -> Self {
        Self {
            control_channel_selection: ControlChannelSelection::A,
        }
    }
}

#[cfg(not(gpdma))]
impl<'d, T: Instance> Spdifrx<'d, T> {
    fn dma_opts() -> TransferOptions {
        TransferOptions {
            half_transfer_ir: true,
            // new_write() and new_read() always use circular mode
            ..Default::default()
        }
    }

    /// Create a new `Spdifrx` instance.
    pub fn new(
        peri: impl Peripheral<P = T> + 'd,
        _irq: impl interrupt::typelevel::Binding<T::GlobalInterrupt, GlobalInterruptHandler<T>> + 'd,
        config: Config,
        spdifrx_in: impl Peripheral<P = impl InPin<T>> + 'd,
        data_dma: impl Peripheral<P = impl Channel + Dma<T>> + 'd,
        data_dma_buf: &'d mut [u32],
    ) -> Self {
        let (spdifrx_in, input_sel) = new_spdifrx_pin!(spdifrx_in, AfType::input(Pull::None));
        Self::setup(config, input_sel);

        into_ref!(peri, data_dma);

        let regs = T::info().regs;
        let dr_request = data_dma.request();
        let dr_ring_buffer =
            unsafe { ReadableRingBuffer::new(data_dma, dr_request, dr_address(regs), data_dma_buf, Self::dma_opts()) };

        Self {
            _peri: peri,
            spdifrx_in,
            data_ring_buffer: dr_ring_buffer,
        }
    }

    fn setup(config: Config, input_sel: u8) {
        T::info().rcc.enable_and_reset();
        T::GlobalInterrupt::unpend();
        unsafe { T::GlobalInterrupt::enable() };

        let regs = T::info().regs;

        regs.imr().write(|imr| {
            imr.set_ifeie(true); // Enables interrupts for TERR, SERR, FERR.
            imr.set_syncdie(true); // Enables SYNCD interrupt.
        });

        regs.cr().write(|cr| {
            cr.set_spdifen(0x00); // Disable SPDIF receiver synchronization.
            cr.set_rxdmaen(true); // Use RX DMA for data. Enabled on `read`.
            cr.set_cbdmaen(false); // Do not capture channel info.
            cr.set_rxsteo(true); // Operate in stereo mode.
            cr.set_drfmt(0x01); // Data is left-aligned (MSB).

            // Disable all status fields in the data register.
            // Status can be obtained directly with the status register DMA.
            cr.set_pmsk(false); // Write parity bit to the data register. FIXME: Add parity check.
            cr.set_vmsk(false); // Write validity to the data register.
            cr.set_cumsk(true); // Do not write C and U bits to the data register.
            cr.set_ptmsk(false); // Write preamble bits to the data register.

            cr.set_chsel(match config.control_channel_selection {
                ControlChannelSelection::A => false,
                ControlChannelSelection::B => true,
            }); // Select channel status source.

            cr.set_nbtr(0x02); // 16 attempts are allowed.
            cr.set_wfa(true); // Wait for activity before going to synchronization phase.
            cr.set_insel(input_sel); // Input pin selection.

            #[cfg(stm32h7)]
            cr.set_cksen(true); // Generate a symbol clock.

            #[cfg(stm32h7)]
            cr.set_cksbkpen(true); // Generate a backup symbol clock.
        });
    }

    /// Start the SPDIFRX driver.
    pub fn start(&mut self) {
        self.data_ring_buffer.start();

        T::info().regs.cr().modify(|cr| {
            cr.set_spdifen(0x03); // Enable S/PDIF receiver.
        });
    }

    /// Read from the SPDIFRX data ring buffer.
    ///
    /// SPDIFRX is always receiving data in the background. This function pops already-received
    /// data from the buffer.
    ///
    /// If there's less than `data.len()` data in the buffer, this waits until there is.
    pub async fn read(&mut self, data: &mut [u32]) -> Result<(), Error> {
        self.data_ring_buffer.read_exact(data).await?;

        let first_preamble = (data[0] >> 4) & 0b11_u32;
        if (first_preamble as u8) == (PreambleType::W as u8) {
            trace!("S/PDIF left/right mismatch");

            // Resynchronize until the first sample is for the left channel.
            self.data_ring_buffer.clear();
            return Err(Error::ChannelSyncError);
        };

        for sample in data.as_mut() {
            if (*sample & (0x0002_u32)) == 0x0001 {
                // Discard invalid samples, setting them to mute level.
                *sample = 0;
            } else {
                // Discard status information in the lowest byte.
                *sample &= 0xFFFFFF00;
            }
        }

        Ok(())
    }
}

#[cfg(not(gpdma))]
impl<'d, T: Instance> Drop for Spdifrx<'d, T> {
    fn drop(&mut self) {
        T::info().regs.cr().modify(|cr| cr.set_spdifen(0x00));
        self.spdifrx_in.as_ref().map(|x| x.set_as_disconnected());
    }
}

struct State {
    #[allow(unused)]
    waker: AtomicWaker,
}

impl State {
    const fn new() -> Self {
        Self {
            waker: AtomicWaker::new(),
        }
    }
}

struct Info {
    regs: crate::pac::spdifrx::Spdifrx,
    rcc: RccInfo,
}

peri_trait!(
    irqs: [GlobalInterrupt],
);

/// SPIDFRX pin trait
pub trait InPin<T: Instance>: crate::gpio::Pin {
    /// Get the GPIO AF number needed to use this pin.
    fn af_num(&self) -> u8;
    /// Get the SPIDFRX INSEL number needed to use this pin.
    fn input_sel(&self) -> u8;
}

dma_trait!(Dma, Instance);

/// Global interrupt handler.
pub struct GlobalInterruptHandler<T: Instance> {
    _phantom: PhantomData<T>,
}

impl<T: Instance> interrupt::typelevel::Handler<T::GlobalInterrupt> for GlobalInterruptHandler<T> {
    unsafe fn on_interrupt() {
        T::state().waker.wake();

        let regs = T::info().regs;
        let sr = regs.sr().read();

        if sr.serr() || sr.terr() || sr.ferr() {
            trace!("SPDIFRX error, resync");

            // Clear errors by disabling SPDIFRX, then reenable.
            regs.cr().modify(|cr| cr.set_spdifen(0x00));
            regs.cr().modify(|cr| cr.set_spdifen(0x03));
        } else if sr.syncd() {
            // Synchronization was successful.
            trace!("SPDIFRX sync success");
        }

        // Clear interrupt flags.
        regs.ifcr().write(|ifcr| {
            ifcr.set_perrcf(true); // Clears parity error flag.
            ifcr.set_ovrcf(true); // Clears overrun error flag.
            ifcr.set_sbdcf(true); // Clears synchronization block detected flag.
            ifcr.set_syncdcf(true); // Clears SYNCD from SR (was read above).
        });
    }
}

foreach_peripheral!(
    (spdifrx, $inst:ident) => {
        #[allow(private_interfaces)]
        impl SealedInstance for peripherals::$inst {
            fn info() -> &'static Info {
                static INFO: Info = Info{
                    regs: crate::pac::$inst,
                    rcc: crate::peripherals::$inst::RCC_INFO,
                };
                &INFO
            }
            fn state() -> &'static State {
                static STATE: State = State::new();
                &STATE
            }
        }

        impl Instance for peripherals::$inst {
            type GlobalInterrupt = crate::_generated::peripheral_interrupts::$inst::GLOBAL;
        }
    };
);