embassy_sync/zerocopy_channel.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
//! A zero-copy queue for sending values between asynchronous tasks.
//!
//! It can be used concurrently by a producer (sender) and a
//! consumer (receiver), i.e. it is an "SPSC channel".
//!
//! This queue takes a Mutex type so that various
//! targets can be attained. For example, a ThreadModeMutex can be used
//! for single-core Cortex-M targets where messages are only passed
//! between tasks running in thread mode. Similarly, a CriticalSectionMutex
//! can also be used for single-core targets where messages are to be
//! passed from exception mode e.g. out of an interrupt handler.
//!
//! This module provides a bounded channel that has a limit on the number of
//! messages that it can store, and if this limit is reached, trying to send
//! another message will result in an error being returned.
use core::cell::RefCell;
use core::future::poll_fn;
use core::marker::PhantomData;
use core::task::{Context, Poll};
use crate::blocking_mutex::raw::RawMutex;
use crate::blocking_mutex::Mutex;
use crate::waitqueue::WakerRegistration;
/// A bounded zero-copy channel for communicating between asynchronous tasks
/// with backpressure.
///
/// The channel will buffer up to the provided number of messages. Once the
/// buffer is full, attempts to `send` new messages will wait until a message is
/// received from the channel.
///
/// All data sent will become available in the same order as it was sent.
///
/// The channel requires a buffer of recyclable elements. Writing to the channel is done through
/// an `&mut T`.
pub struct Channel<'a, M: RawMutex, T> {
buf: *mut T,
phantom: PhantomData<&'a mut T>,
state: Mutex<M, RefCell<State>>,
}
impl<'a, M: RawMutex, T> Channel<'a, M, T> {
/// Initialize a new [`Channel`].
///
/// The provided buffer will be used and reused by the channel's logic, and thus dictates the
/// channel's capacity.
pub fn new(buf: &'a mut [T]) -> Self {
let len = buf.len();
assert!(len != 0);
Self {
buf: buf.as_mut_ptr(),
phantom: PhantomData,
state: Mutex::new(RefCell::new(State {
capacity: len,
front: 0,
back: 0,
full: false,
send_waker: WakerRegistration::new(),
receive_waker: WakerRegistration::new(),
})),
}
}
/// Creates a [`Sender`] and [`Receiver`] from an existing channel.
///
/// Further Senders and Receivers can be created through [`Sender::borrow`] and
/// [`Receiver::borrow`] respectively.
pub fn split(&mut self) -> (Sender<'_, M, T>, Receiver<'_, M, T>) {
(Sender { channel: self }, Receiver { channel: self })
}
/// Clears all elements in the channel.
pub fn clear(&mut self) {
self.state.lock(|s| {
s.borrow_mut().clear();
});
}
/// Returns the number of elements currently in the channel.
pub fn len(&self) -> usize {
self.state.lock(|s| s.borrow().len())
}
/// Returns whether the channel is empty.
pub fn is_empty(&self) -> bool {
self.state.lock(|s| s.borrow().is_empty())
}
/// Returns whether the channel is full.
pub fn is_full(&self) -> bool {
self.state.lock(|s| s.borrow().is_full())
}
}
/// Send-only access to a [`Channel`].
pub struct Sender<'a, M: RawMutex, T> {
channel: &'a Channel<'a, M, T>,
}
impl<'a, M: RawMutex, T> Sender<'a, M, T> {
/// Creates one further [`Sender`] over the same channel.
pub fn borrow(&mut self) -> Sender<'_, M, T> {
Sender { channel: self.channel }
}
/// Attempts to send a value over the channel.
pub fn try_send(&mut self) -> Option<&mut T> {
self.channel.state.lock(|s| {
let s = &mut *s.borrow_mut();
match s.push_index() {
Some(i) => Some(unsafe { &mut *self.channel.buf.add(i) }),
None => None,
}
})
}
/// Attempts to send a value over the channel.
pub fn poll_send(&mut self, cx: &mut Context) -> Poll<&mut T> {
self.channel.state.lock(|s| {
let s = &mut *s.borrow_mut();
match s.push_index() {
Some(i) => Poll::Ready(unsafe { &mut *self.channel.buf.add(i) }),
None => {
s.receive_waker.register(cx.waker());
Poll::Pending
}
}
})
}
/// Asynchronously send a value over the channel.
pub async fn send(&mut self) -> &mut T {
let i = poll_fn(|cx| {
self.channel.state.lock(|s| {
let s = &mut *s.borrow_mut();
match s.push_index() {
Some(i) => Poll::Ready(i),
None => {
s.receive_waker.register(cx.waker());
Poll::Pending
}
}
})
})
.await;
unsafe { &mut *self.channel.buf.add(i) }
}
/// Notify the channel that the sending of the value has been finalized.
pub fn send_done(&mut self) {
self.channel.state.lock(|s| s.borrow_mut().push_done())
}
/// Clears all elements in the channel.
pub fn clear(&mut self) {
self.channel.state.lock(|s| {
s.borrow_mut().clear();
});
}
/// Returns the number of elements currently in the channel.
pub fn len(&self) -> usize {
self.channel.state.lock(|s| s.borrow().len())
}
/// Returns whether the channel is empty.
pub fn is_empty(&self) -> bool {
self.channel.state.lock(|s| s.borrow().is_empty())
}
/// Returns whether the channel is full.
pub fn is_full(&self) -> bool {
self.channel.state.lock(|s| s.borrow().is_full())
}
}
/// Receive-only access to a [`Channel`].
pub struct Receiver<'a, M: RawMutex, T> {
channel: &'a Channel<'a, M, T>,
}
impl<'a, M: RawMutex, T> Receiver<'a, M, T> {
/// Creates one further [`Sender`] over the same channel.
pub fn borrow(&mut self) -> Receiver<'_, M, T> {
Receiver { channel: self.channel }
}
/// Attempts to receive a value over the channel.
pub fn try_receive(&mut self) -> Option<&mut T> {
self.channel.state.lock(|s| {
let s = &mut *s.borrow_mut();
match s.pop_index() {
Some(i) => Some(unsafe { &mut *self.channel.buf.add(i) }),
None => None,
}
})
}
/// Attempts to asynchronously receive a value over the channel.
pub fn poll_receive(&mut self, cx: &mut Context) -> Poll<&mut T> {
self.channel.state.lock(|s| {
let s = &mut *s.borrow_mut();
match s.pop_index() {
Some(i) => Poll::Ready(unsafe { &mut *self.channel.buf.add(i) }),
None => {
s.send_waker.register(cx.waker());
Poll::Pending
}
}
})
}
/// Asynchronously receive a value over the channel.
pub async fn receive(&mut self) -> &mut T {
let i = poll_fn(|cx| {
self.channel.state.lock(|s| {
let s = &mut *s.borrow_mut();
match s.pop_index() {
Some(i) => Poll::Ready(i),
None => {
s.send_waker.register(cx.waker());
Poll::Pending
}
}
})
})
.await;
unsafe { &mut *self.channel.buf.add(i) }
}
/// Notify the channel that the receiving of the value has been finalized.
pub fn receive_done(&mut self) {
self.channel.state.lock(|s| s.borrow_mut().pop_done())
}
/// Clears all elements in the channel.
pub fn clear(&mut self) {
self.channel.state.lock(|s| {
s.borrow_mut().clear();
});
}
/// Returns the number of elements currently in the channel.
pub fn len(&self) -> usize {
self.channel.state.lock(|s| s.borrow().len())
}
/// Returns whether the channel is empty.
pub fn is_empty(&self) -> bool {
self.channel.state.lock(|s| s.borrow().is_empty())
}
/// Returns whether the channel is full.
pub fn is_full(&self) -> bool {
self.channel.state.lock(|s| s.borrow().is_full())
}
}
struct State {
/// Maximum number of elements the channel can hold.
capacity: usize,
/// Front index. Always 0..=(N-1)
front: usize,
/// Back index. Always 0..=(N-1).
back: usize,
/// Used to distinguish "empty" and "full" cases when `front == back`.
/// May only be `true` if `front == back`, always `false` otherwise.
full: bool,
send_waker: WakerRegistration,
receive_waker: WakerRegistration,
}
impl State {
fn increment(&self, i: usize) -> usize {
if i + 1 == self.capacity {
0
} else {
i + 1
}
}
fn clear(&mut self) {
self.front = 0;
self.back = 0;
self.full = false;
}
fn len(&self) -> usize {
if !self.full {
if self.back >= self.front {
self.back - self.front
} else {
self.capacity + self.back - self.front
}
} else {
self.capacity
}
}
fn is_full(&self) -> bool {
self.full
}
fn is_empty(&self) -> bool {
self.front == self.back && !self.full
}
fn push_index(&mut self) -> Option<usize> {
match self.is_full() {
true => None,
false => Some(self.back),
}
}
fn push_done(&mut self) {
assert!(!self.is_full());
self.back = self.increment(self.back);
if self.back == self.front {
self.full = true;
}
self.send_waker.wake();
}
fn pop_index(&mut self) -> Option<usize> {
match self.is_empty() {
true => None,
false => Some(self.front),
}
}
fn pop_done(&mut self) {
assert!(!self.is_empty());
self.front = self.increment(self.front);
self.full = false;
self.receive_waker.wake();
}
}