embassy_sync/
pipe.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
//! Async byte stream pipe.

use core::cell::{RefCell, UnsafeCell};
use core::convert::Infallible;
use core::future::Future;
use core::ops::Range;
use core::pin::Pin;
use core::task::{Context, Poll};

use crate::blocking_mutex::raw::RawMutex;
use crate::blocking_mutex::Mutex;
use crate::ring_buffer::RingBuffer;
use crate::waitqueue::WakerRegistration;

/// Write-only access to a [`Pipe`].
pub struct Writer<'p, M, const N: usize>
where
    M: RawMutex,
{
    pipe: &'p Pipe<M, N>,
}

impl<'p, M, const N: usize> Clone for Writer<'p, M, N>
where
    M: RawMutex,
{
    fn clone(&self) -> Self {
        *self
    }
}

impl<'p, M, const N: usize> Copy for Writer<'p, M, N> where M: RawMutex {}

impl<'p, M, const N: usize> Writer<'p, M, N>
where
    M: RawMutex,
{
    /// Write some bytes to the pipe.
    ///
    /// See [`Pipe::write()`]
    pub fn write<'a>(&'a self, buf: &'a [u8]) -> WriteFuture<'a, M, N> {
        self.pipe.write(buf)
    }

    /// Attempt to immediately write some bytes to the pipe.
    ///
    /// See [`Pipe::try_write()`]
    pub fn try_write(&self, buf: &[u8]) -> Result<usize, TryWriteError> {
        self.pipe.try_write(buf)
    }
}

/// Future returned by [`Pipe::write`] and  [`Writer::write`].
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct WriteFuture<'p, M, const N: usize>
where
    M: RawMutex,
{
    pipe: &'p Pipe<M, N>,
    buf: &'p [u8],
}

impl<'p, M, const N: usize> Future for WriteFuture<'p, M, N>
where
    M: RawMutex,
{
    type Output = usize;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        match self.pipe.try_write_with_context(Some(cx), self.buf) {
            Ok(n) => Poll::Ready(n),
            Err(TryWriteError::Full) => Poll::Pending,
        }
    }
}

impl<'p, M, const N: usize> Unpin for WriteFuture<'p, M, N> where M: RawMutex {}

/// Read-only access to a [`Pipe`].
pub struct Reader<'p, M, const N: usize>
where
    M: RawMutex,
{
    pipe: &'p Pipe<M, N>,
}

impl<'p, M, const N: usize> Reader<'p, M, N>
where
    M: RawMutex,
{
    /// Read some bytes from the pipe.
    ///
    /// See [`Pipe::read()`]
    pub fn read<'a>(&'a self, buf: &'a mut [u8]) -> ReadFuture<'a, M, N> {
        self.pipe.read(buf)
    }

    /// Attempt to immediately read some bytes from the pipe.
    ///
    /// See [`Pipe::try_read()`]
    pub fn try_read(&self, buf: &mut [u8]) -> Result<usize, TryReadError> {
        self.pipe.try_read(buf)
    }

    /// Return the contents of the internal buffer, filling it with more data from the inner reader if it is empty.
    ///
    /// If no bytes are currently available to read, this function waits until at least one byte is available.
    ///
    /// If the reader is at end-of-file (EOF), an empty slice is returned.
    pub fn fill_buf(&mut self) -> FillBufFuture<'_, M, N> {
        FillBufFuture { pipe: Some(self.pipe) }
    }

    /// Try returning contents of the internal buffer.
    ///
    /// If no bytes are currently available to read, this function returns `Err(TryReadError::Empty)`.
    ///
    /// If the reader is at end-of-file (EOF), an empty slice is returned.
    pub fn try_fill_buf(&mut self) -> Result<&[u8], TryReadError> {
        unsafe { self.pipe.try_fill_buf_with_context(None) }
    }

    /// Tell this buffer that `amt` bytes have been consumed from the buffer, so they should no longer be returned in calls to `fill_buf`.
    pub fn consume(&mut self, amt: usize) {
        self.pipe.consume(amt)
    }
}

/// Future returned by [`Pipe::read`] and  [`Reader::read`].
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct ReadFuture<'p, M, const N: usize>
where
    M: RawMutex,
{
    pipe: &'p Pipe<M, N>,
    buf: &'p mut [u8],
}

impl<'p, M, const N: usize> Future for ReadFuture<'p, M, N>
where
    M: RawMutex,
{
    type Output = usize;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        match self.pipe.try_read_with_context(Some(cx), self.buf) {
            Ok(n) => Poll::Ready(n),
            Err(TryReadError::Empty) => Poll::Pending,
        }
    }
}

impl<'p, M, const N: usize> Unpin for ReadFuture<'p, M, N> where M: RawMutex {}

/// Future returned by [`Pipe::fill_buf`] and  [`Reader::fill_buf`].
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct FillBufFuture<'p, M, const N: usize>
where
    M: RawMutex,
{
    pipe: Option<&'p Pipe<M, N>>,
}

impl<'p, M, const N: usize> Future for FillBufFuture<'p, M, N>
where
    M: RawMutex,
{
    type Output = &'p [u8];

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let pipe = self.pipe.take().unwrap();
        match unsafe { pipe.try_fill_buf_with_context(Some(cx)) } {
            Ok(buf) => Poll::Ready(buf),
            Err(TryReadError::Empty) => {
                self.pipe = Some(pipe);
                Poll::Pending
            }
        }
    }
}

impl<'p, M, const N: usize> Unpin for FillBufFuture<'p, M, N> where M: RawMutex {}

/// Error returned by [`try_read`](Pipe::try_read).
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TryReadError {
    /// No data could be read from the pipe because it is currently
    /// empty, and reading would require blocking.
    Empty,
}

/// Error returned by [`try_write`](Pipe::try_write).
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TryWriteError {
    /// No data could be written to the pipe because it is
    /// currently full, and writing would require blocking.
    Full,
}

struct PipeState<const N: usize> {
    buffer: RingBuffer<N>,
    read_waker: WakerRegistration,
    write_waker: WakerRegistration,
}

#[repr(transparent)]
struct Buffer<const N: usize>(UnsafeCell<[u8; N]>);

impl<const N: usize> Buffer<N> {
    unsafe fn get<'a>(&self, r: Range<usize>) -> &'a [u8] {
        let p = self.0.get() as *const u8;
        core::slice::from_raw_parts(p.add(r.start), r.end - r.start)
    }

    unsafe fn get_mut<'a>(&self, r: Range<usize>) -> &'a mut [u8] {
        let p = self.0.get() as *mut u8;
        core::slice::from_raw_parts_mut(p.add(r.start), r.end - r.start)
    }
}

unsafe impl<const N: usize> Send for Buffer<N> {}
unsafe impl<const N: usize> Sync for Buffer<N> {}

/// A bounded byte-oriented pipe for communicating between asynchronous tasks
/// with backpressure.
///
/// The pipe will buffer up to the provided number of bytes. Once the
/// buffer is full, attempts to `write` new bytes will wait until buffer space is freed up.
///
/// All data written will become available in the same order as it was written.
pub struct Pipe<M, const N: usize>
where
    M: RawMutex,
{
    buf: Buffer<N>,
    inner: Mutex<M, RefCell<PipeState<N>>>,
}

impl<M, const N: usize> Pipe<M, N>
where
    M: RawMutex,
{
    /// Establish a new bounded pipe. For example, to create one with a NoopMutex:
    ///
    /// ```
    /// use embassy_sync::pipe::Pipe;
    /// use embassy_sync::blocking_mutex::raw::NoopRawMutex;
    ///
    /// // Declare a bounded pipe, with a buffer of 256 bytes.
    /// let mut pipe = Pipe::<NoopRawMutex, 256>::new();
    /// ```
    pub const fn new() -> Self {
        Self {
            buf: Buffer(UnsafeCell::new([0; N])),
            inner: Mutex::new(RefCell::new(PipeState {
                buffer: RingBuffer::new(),
                read_waker: WakerRegistration::new(),
                write_waker: WakerRegistration::new(),
            })),
        }
    }

    fn lock<R>(&self, f: impl FnOnce(&mut PipeState<N>) -> R) -> R {
        self.inner.lock(|rc| f(&mut *rc.borrow_mut()))
    }

    fn try_read_with_context(&self, cx: Option<&mut Context<'_>>, buf: &mut [u8]) -> Result<usize, TryReadError> {
        self.inner.lock(|rc: &RefCell<PipeState<N>>| {
            let s = &mut *rc.borrow_mut();

            if s.buffer.is_full() {
                s.write_waker.wake();
            }

            let available = unsafe { self.buf.get(s.buffer.pop_buf()) };
            if available.is_empty() {
                if let Some(cx) = cx {
                    s.read_waker.register(cx.waker());
                }
                return Err(TryReadError::Empty);
            }

            let n = available.len().min(buf.len());
            buf[..n].copy_from_slice(&available[..n]);
            s.buffer.pop(n);
            Ok(n)
        })
    }

    // safety: While the returned slice is alive,
    // no `read` or `consume` methods in the pipe must be called.
    unsafe fn try_fill_buf_with_context(&self, cx: Option<&mut Context<'_>>) -> Result<&[u8], TryReadError> {
        self.inner.lock(|rc: &RefCell<PipeState<N>>| {
            let s = &mut *rc.borrow_mut();

            if s.buffer.is_full() {
                s.write_waker.wake();
            }

            let available = unsafe { self.buf.get(s.buffer.pop_buf()) };
            if available.is_empty() {
                if let Some(cx) = cx {
                    s.read_waker.register(cx.waker());
                }
                return Err(TryReadError::Empty);
            }

            Ok(available)
        })
    }

    fn consume(&self, amt: usize) {
        self.inner.lock(|rc: &RefCell<PipeState<N>>| {
            let s = &mut *rc.borrow_mut();
            let available = s.buffer.pop_buf();
            assert!(amt <= available.len());
            s.buffer.pop(amt);
        })
    }

    fn try_write_with_context(&self, cx: Option<&mut Context<'_>>, buf: &[u8]) -> Result<usize, TryWriteError> {
        self.inner.lock(|rc: &RefCell<PipeState<N>>| {
            let s = &mut *rc.borrow_mut();

            if s.buffer.is_empty() {
                s.read_waker.wake();
            }

            let available = unsafe { self.buf.get_mut(s.buffer.push_buf()) };
            if available.is_empty() {
                if let Some(cx) = cx {
                    s.write_waker.register(cx.waker());
                }
                return Err(TryWriteError::Full);
            }

            let n = available.len().min(buf.len());
            available[..n].copy_from_slice(&buf[..n]);
            s.buffer.push(n);
            Ok(n)
        })
    }

    /// Split this pipe into a BufRead-capable reader and a writer.
    ///
    /// The reader and writer borrow the current pipe mutably, so it is not
    /// possible to use it directly while they exist. This is needed because
    /// implementing `BufRead` requires there is a single reader.
    ///
    /// The writer is cloneable, the reader is not.
    pub fn split(&mut self) -> (Reader<'_, M, N>, Writer<'_, M, N>) {
        (Reader { pipe: self }, Writer { pipe: self })
    }

    /// Write some bytes to the pipe.
    ///
    /// This method writes a nonzero amount of bytes from `buf` into the pipe, and
    /// returns the amount of bytes written.
    ///
    /// If it is not possible to write a nonzero amount of bytes because the pipe's buffer is full,
    /// this method will wait until it isn't. See [`try_write`](Self::try_write) for a variant that
    /// returns an error instead of waiting.
    ///
    /// It is not guaranteed that all bytes in the buffer are written, even if there's enough
    /// free space in the pipe buffer for all. In other words, it is possible for `write` to return
    /// without writing all of `buf` (returning a number less than `buf.len()`) and still leave
    /// free space in the pipe buffer. You should always `write` in a loop, or use helpers like
    /// `write_all` from the `embedded-io` crate.
    pub fn write<'a>(&'a self, buf: &'a [u8]) -> WriteFuture<'a, M, N> {
        WriteFuture { pipe: self, buf }
    }

    /// Write all bytes to the pipe.
    ///
    /// This method writes all bytes from `buf` into the pipe
    pub async fn write_all(&self, mut buf: &[u8]) {
        while !buf.is_empty() {
            let n = self.write(buf).await;
            buf = &buf[n..];
        }
    }

    /// Attempt to immediately write some bytes to the pipe.
    ///
    /// This method will either write a nonzero amount of bytes to the pipe immediately,
    /// or return an error if the pipe is empty. See [`write`](Self::write) for a variant
    /// that waits instead of returning an error.
    pub fn try_write(&self, buf: &[u8]) -> Result<usize, TryWriteError> {
        self.try_write_with_context(None, buf)
    }

    /// Read some bytes from the pipe.
    ///
    /// This method reads a nonzero amount of bytes from the pipe into `buf` and
    /// returns the amount of bytes read.
    ///
    /// If it is not possible to read a nonzero amount of bytes because the pipe's buffer is empty,
    /// this method will wait until it isn't. See [`try_read`](Self::try_read) for a variant that
    /// returns an error instead of waiting.
    ///
    /// It is not guaranteed that all bytes in the buffer are read, even if there's enough
    /// space in `buf` for all. In other words, it is possible for `read` to return
    /// without filling `buf` (returning a number less than `buf.len()`) and still leave bytes
    /// in the pipe buffer. You should always `read` in a loop, or use helpers like
    /// `read_exact` from the `embedded-io` crate.
    pub fn read<'a>(&'a self, buf: &'a mut [u8]) -> ReadFuture<'a, M, N> {
        ReadFuture { pipe: self, buf }
    }

    /// Attempt to immediately read some bytes from the pipe.
    ///
    /// This method will either read a nonzero amount of bytes from the pipe immediately,
    /// or return an error if the pipe is empty. See [`read`](Self::read) for a variant
    /// that waits instead of returning an error.
    pub fn try_read(&self, buf: &mut [u8]) -> Result<usize, TryReadError> {
        self.try_read_with_context(None, buf)
    }

    /// Clear the data in the pipe's buffer.
    pub fn clear(&self) {
        self.inner.lock(|rc: &RefCell<PipeState<N>>| {
            let s = &mut *rc.borrow_mut();

            s.buffer.clear();
            s.write_waker.wake();
        })
    }

    /// Return whether the pipe is full (no free space in the buffer)
    pub fn is_full(&self) -> bool {
        self.len() == N
    }

    /// Return whether the pipe is empty (no data buffered)
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Total byte capacity.
    ///
    /// This is the same as the `N` generic param.
    pub fn capacity(&self) -> usize {
        N
    }

    /// Used byte capacity.
    pub fn len(&self) -> usize {
        self.lock(|c| c.buffer.len())
    }

    /// Free byte capacity.
    ///
    /// This is equivalent to `capacity() - len()`
    pub fn free_capacity(&self) -> usize {
        N - self.len()
    }
}

impl<M: RawMutex, const N: usize> embedded_io_async::ErrorType for Pipe<M, N> {
    type Error = Infallible;
}

impl<M: RawMutex, const N: usize> embedded_io_async::Read for Pipe<M, N> {
    async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
        Ok(Pipe::read(self, buf).await)
    }
}

impl<M: RawMutex, const N: usize> embedded_io_async::Write for Pipe<M, N> {
    async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
        Ok(Pipe::write(self, buf).await)
    }

    async fn flush(&mut self) -> Result<(), Self::Error> {
        Ok(())
    }
}

impl<M: RawMutex, const N: usize> embedded_io_async::ErrorType for &Pipe<M, N> {
    type Error = Infallible;
}

impl<M: RawMutex, const N: usize> embedded_io_async::Read for &Pipe<M, N> {
    async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
        Ok(Pipe::read(self, buf).await)
    }
}

impl<M: RawMutex, const N: usize> embedded_io_async::Write for &Pipe<M, N> {
    async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
        Ok(Pipe::write(self, buf).await)
    }

    async fn flush(&mut self) -> Result<(), Self::Error> {
        Ok(())
    }
}

impl<M: RawMutex, const N: usize> embedded_io_async::ErrorType for Reader<'_, M, N> {
    type Error = Infallible;
}

impl<M: RawMutex, const N: usize> embedded_io_async::Read for Reader<'_, M, N> {
    async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
        Ok(Reader::read(self, buf).await)
    }
}

impl<M: RawMutex, const N: usize> embedded_io_async::BufRead for Reader<'_, M, N> {
    async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> {
        Ok(Reader::fill_buf(self).await)
    }

    fn consume(&mut self, amt: usize) {
        Reader::consume(self, amt)
    }
}

impl<M: RawMutex, const N: usize> embedded_io_async::ErrorType for Writer<'_, M, N> {
    type Error = Infallible;
}

impl<M: RawMutex, const N: usize> embedded_io_async::Write for Writer<'_, M, N> {
    async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
        Ok(Writer::write(self, buf).await)
    }

    async fn flush(&mut self) -> Result<(), Self::Error> {
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use futures_executor::ThreadPool;
    use futures_util::task::SpawnExt;
    use static_cell::StaticCell;

    use super::*;
    use crate::blocking_mutex::raw::{CriticalSectionRawMutex, NoopRawMutex};

    #[test]
    fn writing_once() {
        let c = Pipe::<NoopRawMutex, 3>::new();
        assert!(c.try_write(&[1]).is_ok());
        assert_eq!(c.free_capacity(), 2);
    }

    #[test]
    fn writing_when_full() {
        let c = Pipe::<NoopRawMutex, 3>::new();
        assert_eq!(c.try_write(&[42]), Ok(1));
        assert_eq!(c.try_write(&[43]), Ok(1));
        assert_eq!(c.try_write(&[44]), Ok(1));
        assert_eq!(c.try_write(&[45]), Err(TryWriteError::Full));
        assert_eq!(c.free_capacity(), 0);
    }

    #[test]
    fn receiving_once_with_one_send() {
        let c = Pipe::<NoopRawMutex, 3>::new();
        assert!(c.try_write(&[42]).is_ok());
        let mut buf = [0; 16];
        assert_eq!(c.try_read(&mut buf), Ok(1));
        assert_eq!(buf[0], 42);
        assert_eq!(c.free_capacity(), 3);
    }

    #[test]
    fn receiving_when_empty() {
        let c = Pipe::<NoopRawMutex, 3>::new();
        let mut buf = [0; 16];
        assert_eq!(c.try_read(&mut buf), Err(TryReadError::Empty));
        assert_eq!(c.free_capacity(), 3);
    }

    #[test]
    fn simple_send_and_receive() {
        let c = Pipe::<NoopRawMutex, 3>::new();
        assert!(c.try_write(&[42]).is_ok());
        let mut buf = [0; 16];
        assert_eq!(c.try_read(&mut buf), Ok(1));
        assert_eq!(buf[0], 42);
    }

    #[test]
    fn read_buf() {
        let mut c = Pipe::<NoopRawMutex, 3>::new();
        let (mut r, w) = c.split();
        assert!(w.try_write(&[42, 43]).is_ok());
        let buf = r.try_fill_buf().unwrap();
        assert_eq!(buf, &[42, 43]);
        let buf = r.try_fill_buf().unwrap();
        assert_eq!(buf, &[42, 43]);
        r.consume(1);
        let buf = r.try_fill_buf().unwrap();
        assert_eq!(buf, &[43]);
        r.consume(1);
        assert_eq!(r.try_fill_buf(), Err(TryReadError::Empty));
        assert_eq!(w.try_write(&[44, 45, 46]), Ok(1));
        assert_eq!(w.try_write(&[45, 46]), Ok(2));
        let buf = r.try_fill_buf().unwrap();
        assert_eq!(buf, &[44]); // only one byte due to wraparound.
        r.consume(1);
        let buf = r.try_fill_buf().unwrap();
        assert_eq!(buf, &[45, 46]);
        assert!(w.try_write(&[47]).is_ok());
        let buf = r.try_fill_buf().unwrap();
        assert_eq!(buf, &[45, 46, 47]);
        r.consume(3);
    }

    #[test]
    fn writer_is_cloneable() {
        let mut c = Pipe::<NoopRawMutex, 3>::new();
        let (_r, w) = c.split();
        let _ = w.clone();
    }

    #[futures_test::test]
    async fn receiver_receives_given_try_write_async() {
        let executor = ThreadPool::new().unwrap();

        static CHANNEL: StaticCell<Pipe<CriticalSectionRawMutex, 3>> = StaticCell::new();
        let c = &*CHANNEL.init(Pipe::new());
        let c2 = c;
        let f = async move {
            assert_eq!(c2.try_write(&[42]), Ok(1));
        };
        executor.spawn(f).unwrap();
        let mut buf = [0; 16];
        assert_eq!(c.read(&mut buf).await, 1);
        assert_eq!(buf[0], 42);
    }

    #[futures_test::test]
    async fn sender_send_completes_if_capacity() {
        let c = Pipe::<CriticalSectionRawMutex, 1>::new();
        c.write(&[42]).await;
        let mut buf = [0; 16];
        assert_eq!(c.read(&mut buf).await, 1);
        assert_eq!(buf[0], 42);
    }
}