embassy_sync/
zerocopy_channel.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
//! A zero-copy queue for sending values between asynchronous tasks.
//!
//! It can be used concurrently by a producer (sender) and a
//! consumer (receiver), i.e. it is an  "SPSC channel".
//!
//! This queue takes a Mutex type so that various
//! targets can be attained. For example, a ThreadModeMutex can be used
//! for single-core Cortex-M targets where messages are only passed
//! between tasks running in thread mode. Similarly, a CriticalSectionMutex
//! can also be used for single-core targets where messages are to be
//! passed from exception mode e.g. out of an interrupt handler.
//!
//! This module provides a bounded channel that has a limit on the number of
//! messages that it can store, and if this limit is reached, trying to send
//! another message will result in an error being returned.

use core::cell::RefCell;
use core::future::poll_fn;
use core::marker::PhantomData;
use core::task::{Context, Poll};

use crate::blocking_mutex::raw::RawMutex;
use crate::blocking_mutex::Mutex;
use crate::waitqueue::WakerRegistration;

/// A bounded zero-copy channel for communicating between asynchronous tasks
/// with backpressure.
///
/// The channel will buffer up to the provided number of messages.  Once the
/// buffer is full, attempts to `send` new messages will wait until a message is
/// received from the channel.
///
/// All data sent will become available in the same order as it was sent.
///
/// The channel requires a buffer of recyclable elements.  Writing to the channel is done through
/// an `&mut T`.
pub struct Channel<'a, M: RawMutex, T> {
    buf: *mut T,
    phantom: PhantomData<&'a mut T>,
    state: Mutex<M, RefCell<State>>,
}

impl<'a, M: RawMutex, T> Channel<'a, M, T> {
    /// Initialize a new [`Channel`].
    ///
    /// The provided buffer will be used and reused by the channel's logic, and thus dictates the
    /// channel's capacity.
    pub fn new(buf: &'a mut [T]) -> Self {
        let len = buf.len();
        assert!(len != 0);

        Self {
            buf: buf.as_mut_ptr(),
            phantom: PhantomData,
            state: Mutex::new(RefCell::new(State {
                capacity: len,
                front: 0,
                back: 0,
                full: false,
                send_waker: WakerRegistration::new(),
                receive_waker: WakerRegistration::new(),
            })),
        }
    }

    /// Creates a [`Sender`] and [`Receiver`] from an existing channel.
    ///
    /// Further Senders and Receivers can be created through [`Sender::borrow`] and
    /// [`Receiver::borrow`] respectively.
    pub fn split(&mut self) -> (Sender<'_, M, T>, Receiver<'_, M, T>) {
        (Sender { channel: self }, Receiver { channel: self })
    }

    /// Clears all elements in the channel.
    pub fn clear(&mut self) {
        self.state.lock(|s| {
            s.borrow_mut().clear();
        });
    }

    /// Returns the number of elements currently in the channel.
    pub fn len(&self) -> usize {
        self.state.lock(|s| s.borrow().len())
    }

    /// Returns whether the channel is empty.
    pub fn is_empty(&self) -> bool {
        self.state.lock(|s| s.borrow().is_empty())
    }

    /// Returns whether the channel is full.
    pub fn is_full(&self) -> bool {
        self.state.lock(|s| s.borrow().is_full())
    }
}

/// Send-only access to a [`Channel`].
pub struct Sender<'a, M: RawMutex, T> {
    channel: &'a Channel<'a, M, T>,
}

impl<'a, M: RawMutex, T> Sender<'a, M, T> {
    /// Creates one further [`Sender`] over the same channel.
    pub fn borrow(&mut self) -> Sender<'_, M, T> {
        Sender { channel: self.channel }
    }

    /// Attempts to send a value over the channel.
    pub fn try_send(&mut self) -> Option<&mut T> {
        self.channel.state.lock(|s| {
            let s = &mut *s.borrow_mut();
            match s.push_index() {
                Some(i) => Some(unsafe { &mut *self.channel.buf.add(i) }),
                None => None,
            }
        })
    }

    /// Attempts to send a value over the channel.
    pub fn poll_send(&mut self, cx: &mut Context) -> Poll<&mut T> {
        self.channel.state.lock(|s| {
            let s = &mut *s.borrow_mut();
            match s.push_index() {
                Some(i) => Poll::Ready(unsafe { &mut *self.channel.buf.add(i) }),
                None => {
                    s.receive_waker.register(cx.waker());
                    Poll::Pending
                }
            }
        })
    }

    /// Asynchronously send a value over the channel.
    pub async fn send(&mut self) -> &mut T {
        let i = poll_fn(|cx| {
            self.channel.state.lock(|s| {
                let s = &mut *s.borrow_mut();
                match s.push_index() {
                    Some(i) => Poll::Ready(i),
                    None => {
                        s.receive_waker.register(cx.waker());
                        Poll::Pending
                    }
                }
            })
        })
        .await;
        unsafe { &mut *self.channel.buf.add(i) }
    }

    /// Notify the channel that the sending of the value has been finalized.
    pub fn send_done(&mut self) {
        self.channel.state.lock(|s| s.borrow_mut().push_done())
    }

    /// Clears all elements in the channel.
    pub fn clear(&mut self) {
        self.channel.state.lock(|s| {
            s.borrow_mut().clear();
        });
    }

    /// Returns the number of elements currently in the channel.
    pub fn len(&self) -> usize {
        self.channel.state.lock(|s| s.borrow().len())
    }

    /// Returns whether the channel is empty.
    pub fn is_empty(&self) -> bool {
        self.channel.state.lock(|s| s.borrow().is_empty())
    }

    /// Returns whether the channel is full.
    pub fn is_full(&self) -> bool {
        self.channel.state.lock(|s| s.borrow().is_full())
    }
}

/// Receive-only access to a [`Channel`].
pub struct Receiver<'a, M: RawMutex, T> {
    channel: &'a Channel<'a, M, T>,
}

impl<'a, M: RawMutex, T> Receiver<'a, M, T> {
    /// Creates one further [`Sender`] over the same channel.
    pub fn borrow(&mut self) -> Receiver<'_, M, T> {
        Receiver { channel: self.channel }
    }

    /// Attempts to receive a value over the channel.
    pub fn try_receive(&mut self) -> Option<&mut T> {
        self.channel.state.lock(|s| {
            let s = &mut *s.borrow_mut();
            match s.pop_index() {
                Some(i) => Some(unsafe { &mut *self.channel.buf.add(i) }),
                None => None,
            }
        })
    }

    /// Attempts to asynchronously receive a value over the channel.
    pub fn poll_receive(&mut self, cx: &mut Context) -> Poll<&mut T> {
        self.channel.state.lock(|s| {
            let s = &mut *s.borrow_mut();
            match s.pop_index() {
                Some(i) => Poll::Ready(unsafe { &mut *self.channel.buf.add(i) }),
                None => {
                    s.send_waker.register(cx.waker());
                    Poll::Pending
                }
            }
        })
    }

    /// Asynchronously receive a value over the channel.
    pub async fn receive(&mut self) -> &mut T {
        let i = poll_fn(|cx| {
            self.channel.state.lock(|s| {
                let s = &mut *s.borrow_mut();
                match s.pop_index() {
                    Some(i) => Poll::Ready(i),
                    None => {
                        s.send_waker.register(cx.waker());
                        Poll::Pending
                    }
                }
            })
        })
        .await;
        unsafe { &mut *self.channel.buf.add(i) }
    }

    /// Notify the channel that the receiving of the value has been finalized.
    pub fn receive_done(&mut self) {
        self.channel.state.lock(|s| s.borrow_mut().pop_done())
    }

    /// Clears all elements in the channel.
    pub fn clear(&mut self) {
        self.channel.state.lock(|s| {
            s.borrow_mut().clear();
        });
    }

    /// Returns the number of elements currently in the channel.
    pub fn len(&self) -> usize {
        self.channel.state.lock(|s| s.borrow().len())
    }

    /// Returns whether the channel is empty.
    pub fn is_empty(&self) -> bool {
        self.channel.state.lock(|s| s.borrow().is_empty())
    }

    /// Returns whether the channel is full.
    pub fn is_full(&self) -> bool {
        self.channel.state.lock(|s| s.borrow().is_full())
    }
}

struct State {
    /// Maximum number of elements the channel can hold.
    capacity: usize,

    /// Front index. Always 0..=(N-1)
    front: usize,
    /// Back index. Always 0..=(N-1).
    back: usize,

    /// Used to distinguish "empty" and "full" cases when `front == back`.
    /// May only be `true` if `front == back`, always `false` otherwise.
    full: bool,

    send_waker: WakerRegistration,
    receive_waker: WakerRegistration,
}

impl State {
    fn increment(&self, i: usize) -> usize {
        if i + 1 == self.capacity {
            0
        } else {
            i + 1
        }
    }

    fn clear(&mut self) {
        self.front = 0;
        self.back = 0;
        self.full = false;
    }

    fn len(&self) -> usize {
        if !self.full {
            if self.back >= self.front {
                self.back - self.front
            } else {
                self.capacity + self.back - self.front
            }
        } else {
            self.capacity
        }
    }

    fn is_full(&self) -> bool {
        self.full
    }

    fn is_empty(&self) -> bool {
        self.front == self.back && !self.full
    }

    fn push_index(&mut self) -> Option<usize> {
        match self.is_full() {
            true => None,
            false => Some(self.back),
        }
    }

    fn push_done(&mut self) {
        assert!(!self.is_full());
        self.back = self.increment(self.back);
        if self.back == self.front {
            self.full = true;
        }
        self.send_waker.wake();
    }

    fn pop_index(&mut self) -> Option<usize> {
        match self.is_empty() {
            true => None,
            false => Some(self.front),
        }
    }

    fn pop_done(&mut self) {
        assert!(!self.is_empty());
        self.front = self.increment(self.front);
        self.full = false;
        self.receive_waker.wake();
    }
}