embassy_sync/signal.rs
1//! A synchronization primitive for passing the latest value to a task.
2use core::cell::Cell;
3use core::future::{poll_fn, Future};
4use core::task::{Context, Poll, Waker};
5
6use crate::blocking_mutex::raw::RawMutex;
7use crate::blocking_mutex::Mutex;
8
9/// Single-slot signaling primitive.
10///
11/// This is similar to a [`Channel`](crate::channel::Channel) with a buffer size of 1, except
12/// "sending" to it (calling [`Signal::signal`]) when full will overwrite the previous value instead
13/// of waiting for the receiver to pop the previous value.
14///
15/// It is useful for sending data between tasks when the receiver only cares about
16/// the latest data, and therefore it's fine to "lose" messages. This is often the case for "state"
17/// updates.
18///
19/// For more advanced use cases, you might want to use [`Channel`](crate::channel::Channel) instead.
20///
21/// Signals are generally declared as `static`s and then borrowed as required.
22///
23/// ```
24/// use embassy_sync::signal::Signal;
25/// use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
26///
27/// enum SomeCommand {
28/// On,
29/// Off,
30/// }
31///
32/// static SOME_SIGNAL: Signal<CriticalSectionRawMutex, SomeCommand> = Signal::new();
33/// ```
34pub struct Signal<M, T>
35where
36 M: RawMutex,
37{
38 state: Mutex<M, Cell<State<T>>>,
39}
40
41enum State<T> {
42 None,
43 Waiting(Waker),
44 Signaled(T),
45}
46
47impl<M, T> Signal<M, T>
48where
49 M: RawMutex,
50{
51 /// Create a new `Signal`.
52 pub const fn new() -> Self {
53 Self {
54 state: Mutex::new(Cell::new(State::None)),
55 }
56 }
57}
58
59impl<M, T> Default for Signal<M, T>
60where
61 M: RawMutex,
62{
63 fn default() -> Self {
64 Self::new()
65 }
66}
67
68impl<M, T> Signal<M, T>
69where
70 M: RawMutex,
71{
72 /// Mark this Signal as signaled.
73 pub fn signal(&self, val: T) {
74 self.state.lock(|cell| {
75 let state = cell.replace(State::Signaled(val));
76 if let State::Waiting(waker) = state {
77 waker.wake();
78 }
79 })
80 }
81
82 /// Remove the queued value in this `Signal`, if any.
83 pub fn reset(&self) {
84 self.state.lock(|cell| cell.set(State::None));
85 }
86
87 fn poll_wait(&self, cx: &mut Context<'_>) -> Poll<T> {
88 self.state.lock(|cell| {
89 let state = cell.replace(State::None);
90 match state {
91 State::None => {
92 cell.set(State::Waiting(cx.waker().clone()));
93 Poll::Pending
94 }
95 State::Waiting(w) if w.will_wake(cx.waker()) => {
96 cell.set(State::Waiting(w));
97 Poll::Pending
98 }
99 State::Waiting(w) => {
100 cell.set(State::Waiting(cx.waker().clone()));
101 w.wake();
102 Poll::Pending
103 }
104 State::Signaled(res) => Poll::Ready(res),
105 }
106 })
107 }
108
109 /// Future that completes when this Signal has been signaled.
110 pub fn wait(&self) -> impl Future<Output = T> + '_ {
111 poll_fn(move |cx| self.poll_wait(cx))
112 }
113
114 /// non-blocking method to try and take the signal value.
115 pub fn try_take(&self) -> Option<T> {
116 self.state.lock(|cell| {
117 let state = cell.replace(State::None);
118 match state {
119 State::Signaled(res) => Some(res),
120 state => {
121 cell.set(state);
122 None
123 }
124 }
125 })
126 }
127
128 /// non-blocking method to check whether this signal has been signaled. This does not clear the signal.
129 pub fn signaled(&self) -> bool {
130 self.state.lock(|cell| {
131 let state = cell.replace(State::None);
132
133 let res = matches!(state, State::Signaled(_));
134
135 cell.set(state);
136
137 res
138 })
139 }
140}