1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
//! The triangle primitive.
use core::cmp::{max, min, Ordering};
use crate::{
geometry::{Dimensions, Point},
primitives::{
common::{LineJoin, LineSide, LinearEquation, Scanline, StrokeOffset},
ContainsPoint, Line, PointsIter, Primitive, Rectangle,
},
transform::Transform,
};
mod points;
mod scanline_intersections;
mod scanline_iterator;
mod styled;
pub use points::Points;
pub use styled::StyledPixelsIterator;
/// Triangle primitive
///
/// # Examples
///
/// ## Create some triangles with different styles
///
/// ```rust
/// use embedded_graphics::{
/// pixelcolor::Rgb565, prelude::*, primitives::{Triangle, PrimitiveStyle},
/// };
/// # use embedded_graphics::mock_display::MockDisplay;
/// # let mut display = MockDisplay::default();
/// # display.set_allow_overdraw(true);
///
/// // Triangle with red 1 px wide stroke
/// Triangle::new(Point::new(40, 20), Point::new(50, 25), Point::new(60, 60))
/// .into_styled(PrimitiveStyle::with_stroke(Rgb565::RED, 1))
/// .draw(&mut display)?;
///
/// // Triangle with translation applied
/// Triangle::new(Point::new(40, 20), Point::new(50, 25), Point::new(60, 60))
/// .translate(Point::new(-10, -20))
/// .into_styled(PrimitiveStyle::with_stroke(Rgb565::GREEN, 1))
/// .draw(&mut display)?;
/// # Ok::<(), core::convert::Infallible>(())
/// ```
///
/// ## Create a triangle from a slice
///
/// A triangle can be created from a `&[Point]` slice. If the slice is not exactly 3 elements long,
/// the [`from_slice`] method will panic.
///
/// ```rust
/// use embedded_graphics::{geometry::Point, primitives::Triangle};
///
/// let p1 = Point::new(5, 10);
/// let p2 = Point::new(15, 25);
/// let p3 = Point::new(5, 25);
///
/// let tri = Triangle::from_slice(&[p1, p2, p3]);
/// #
/// # assert_eq!(tri, Triangle::new(p1, p2, p3));
/// ```
///
/// [`from_slice`]: Triangle::from_slice()
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug, Default)]
#[cfg_attr(feature = "defmt", derive(::defmt::Format))]
pub struct Triangle {
/// The vertices of the triangle.
pub vertices: [Point; 3],
}
impl Primitive for Triangle {}
impl PointsIter for Triangle {
type Iter = Points;
fn points(&self) -> Self::Iter {
Points::new(self)
}
}
impl ContainsPoint for Triangle {
fn contains(&self, point: Point) -> bool {
// Skip expensive calculations below if point is outside the bounding box
if !self.bounding_box().contains(point) {
return false;
}
let p = point;
let [p1, p2, p3] = self.vertices;
// Check if point is inside triangle using https://stackoverflow.com/a/20861130/383609.
// Works for any point ordering.
let is_inside = {
let s = p1.y * p3.x - p1.x * p3.y + (p3.y - p1.y) * p.x + (p1.x - p3.x) * p.y;
let t = p1.x * p2.y - p1.y * p2.x + (p1.y - p2.y) * p.x + (p2.x - p1.x) * p.y;
if (s < 0) != (t < 0) {
false
} else {
// Determinant
let a = self.area_doubled();
// If determinant is zero, triangle is colinear and can never contain a point.
if a == 0 {
return false;
}
// This check allows this algorithm to work with clockwise or counterclockwise
// triangles.
if a < 0 {
s <= 0 && s + t >= a
} else {
s >= 0 && s + t <= a
}
}
};
// Skip expensive point-on-line check below if point is definitely inside triangle
if is_inside {
return true;
}
// Sort points into same order as `ScanlineIterator` so this check produces the same results
// as a rendered triangle would.
let [p1, p2, p3] = self.sorted_yx().vertices;
// Special case: due to the Bresenham algorithm being used to render triangles, some pixel
// centers on a Styled<Triangle> lie outside the mathematical triangle. This check
// inefficiently checks to see if the point lies on any of the border edges.
Line::new(p1, p2)
.points()
.chain(Line::new(p1, p3).points())
.chain(Line::new(p2, p3).points())
.any(|line_point| line_point == p)
}
}
impl Dimensions for Triangle {
fn bounding_box(&self) -> Rectangle {
let [p1, p2, p3] = self.vertices;
let x_min = min(min(p1.x, p2.x), p3.x);
let y_min = min(min(p1.y, p2.y), p3.y);
let x_max = max(max(p1.x, p2.x), p3.x);
let y_max = max(max(p1.y, p2.y), p3.y);
Rectangle::with_corners(Point::new(x_min, y_min), Point::new(x_max, y_max))
}
}
impl Triangle {
/// Create a new triangle with the given vertices.
pub const fn new(vertex1: Point, vertex2: Point, vertex3: Point) -> Self {
Triangle {
vertices: [vertex1, vertex2, vertex3],
}
}
/// Creates a new triangle from a [`Point`] slice.
///
/// # Panics
///
/// This method will panic if the given slice is not exactly 3 items long.
///
/// [`Point`]: super::super::geometry::Point
pub fn from_slice(vertices: &[Point]) -> Self {
match vertices {
[p1, p2, p3] => Self::new(*p1, *p2, *p3),
vertices => panic!("source slice length ({}) must equal 3", vertices.len()),
}
}
/// Return the area of the triangle, doubled.
///
/// This method can be used to determine if the triangle is colinear by checking if the returned
/// value is equal to zero.
pub(in crate::primitives) const fn area_doubled(&self) -> i32 {
let [p1, p2, p3] = self.vertices;
-p2.y * p3.x + p1.y * (p3.x - p2.x) + p1.x * (p2.y - p3.y) + p2.x * p3.y
}
/// Create a new triangle with points sorted in a clockwise direction.
pub(in crate::primitives::triangle) fn sorted_clockwise(&self) -> Self {
match self.area_doubled().cmp(&0) {
// Triangle is wound CCW. Swap two points to make it CW.
Ordering::Less => Self::new(self.vertices[1], self.vertices[0], self.vertices[2]),
// Triangle is already CW, do nothing.
Ordering::Greater => *self,
// Triangle is colinear. Sort points so they lie sequentially along the line.
Ordering::Equal => self.sorted_yx(),
}
}
/// Sort the 3 vertices of the triangle in order of increasing Y value.
///
/// If two points have the same Y value, the one with the lesser X value is put before.
const fn sorted_yx(&self) -> Self {
let [p1, p2, p3] = self.vertices;
let (y1, y2) = sort_two_yx(p1, p2);
let (y1, y3) = sort_two_yx(p3, y1);
let (y2, y3) = sort_two_yx(y3, y2);
Self::new(y1, y2, y3)
}
pub(in crate::primitives::triangle) fn scanline_intersection(
&self,
scanline_y: i32,
) -> Scanline {
let [p1, p2, p3] = self.sorted_yx().vertices;
let mut scanline = Scanline::new_empty(scanline_y);
// Triangle is colinear. We can get away with only intersecting the single line.
if self.area_doubled() == 0 {
scanline.bresenham_intersection(&Line::new(p1, p3));
return scanline;
}
scanline.bresenham_intersection(&Line::new(p1, p2));
scanline.bresenham_intersection(&Line::new(p1, p3));
scanline.bresenham_intersection(&Line::new(p2, p3));
scanline
}
/// Generate a line join for each corner of the triangle.
fn joins(&self, stroke_width: u32, stroke_offset: StrokeOffset) -> [LineJoin; 3] {
let [p1, p2, p3] = self.vertices;
[
LineJoin::from_points(p3, p1, p2, stroke_width, stroke_offset),
LineJoin::from_points(p1, p2, p3, stroke_width, stroke_offset),
LineJoin::from_points(p2, p3, p1, stroke_width, stroke_offset),
]
}
/// Compute whether a triangle with thick stroke has a hole in its center or is completely
/// filled by stroke.
// PERF: This doesn't need to compute the entire join, much like how `thick_stroke_inset`
// doesn't
pub(in crate::primitives::triangle) fn is_collapsed(
&self,
stroke_width: u32,
stroke_offset: StrokeOffset,
) -> bool {
let joins = self.joins(stroke_width, stroke_offset);
joins.iter().enumerate().any(|(i, join)| {
// Quick check: if the join is degenerate, no hole can occur.
if join.is_degenerate() {
return true;
}
// Compute inner-most points of each join. The triangle is sorted clockwise, so that's
// the right-side point. The `first_edge_end` and `second_edge_start` points are always
// the same in this case, as this is the "pinched" side of the join, so we'll
// arbitrarily pick `first_edge_end`.
let inner_point = join.first_edge_end.right;
// Find opposite edge to the given point.
let opposite = {
let start = self.vertices[(i + 1) % 3];
let end = self.vertices[(i + 2) % 3];
// Get right side extent (triangle is sorted clockwise, remember)
Line::new(start, end).extents(stroke_width, stroke_offset).1
};
// If the inner point is to the left of the opposite side line, the triangle edges self-
// intersect, so the triangle is collapsed.
LinearEquation::from_line(&opposite).check_side(inner_point, LineSide::Left)
})
}
}
impl Transform for Triangle {
/// Translate the triangle from its current position to a new position by (x, y) pixels,
/// returning a new `Triangle`. For a mutating transform, see `translate_mut`.
///
/// ```
/// # use embedded_graphics::primitives::Triangle;
/// # use embedded_graphics::prelude::*;
/// let tri = Triangle::new(Point::new(5, 10), Point::new(15, 20), Point::new(8, 15));
/// let moved = tri.translate(Point::new(10, 10));
///
/// assert_eq!(
/// moved,
/// Triangle::new(Point::new(15, 20), Point::new(25, 30), Point::new(18, 25))
/// );
/// ```
fn translate(&self, by: Point) -> Self {
let mut triangle = *self;
triangle.translate_mut(by);
triangle
}
/// Translate the triangle from its current position to a new position by (x, y) pixels.
///
/// ```
/// # use embedded_graphics::primitives::Triangle;
/// # use embedded_graphics::prelude::*;
/// let mut tri = Triangle::new(Point::new(5, 10), Point::new(15, 20), Point::new(10, 15));
/// tri.translate_mut(Point::new(10, 10));
///
/// assert_eq!(
/// tri,
/// Triangle::new(Point::new(15, 20), Point::new(25, 30), Point::new(20, 25))
/// )
/// ```
fn translate_mut(&mut self, by: Point) -> &mut Self {
self.vertices.iter_mut().for_each(|v| *v += by);
self
}
}
const fn sort_two_yx(p1: Point, p2: Point) -> (Point, Point) {
// If p1.y is less than p2.y, return it first. Otherwise, if they have the same Y coordinate,
// the first point becomes the one with the lesser X coordinate.
if p1.y < p2.y || (p1.y == p2.y && p1.x < p2.x) {
(p1, p2)
} else {
(p2, p1)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{geometry::Size, mock_display::MockDisplay, pixelcolor::BinaryColor};
#[test]
fn dimensions() {
let tri = Triangle::new(Point::new(5, 10), Point::new(15, 25), Point::new(5, 25));
let moved = tri.translate(Point::new(-10, -11));
assert_eq!(tri.bounding_box().size, Size::new(11, 16));
assert_eq!(
moved,
Triangle::new(Point::new(-5, -1), Point::new(5, 14), Point::new(-5, 14))
);
assert_eq!(moved.bounding_box().size, Size::new(11, 16));
}
#[test]
fn it_can_be_translated() {
let tri = Triangle::new(Point::new(5, 10), Point::new(15, 20), Point::new(10, 15));
let moved = tri.translate(Point::new(5, 10));
assert_eq!(
moved,
Triangle::new(Point::new(10, 20), Point::new(20, 30), Point::new(15, 25))
);
}
#[test]
fn contains() {
let triangles = [
Triangle::new(Point::new(0, 0), Point::new(63, 10), Point::new(15, 63)),
Triangle::new(Point::new(5, 0), Point::new(30, 63), Point::new(63, 0)),
Triangle::new(Point::new(0, 0), Point::new(0, 63), Point::new(63, 30)),
Triangle::new(Point::new(22, 0), Point::new(0, 63), Point::new(63, 63)),
Triangle::new(Point::new(0, 22), Point::new(63, 0), Point::new(63, 63)),
];
for triangle in triangles.iter() {
let expected = MockDisplay::from_points(triangle.points(), BinaryColor::On);
for point in Rectangle::new(Point::new(-5, -5), Size::new(70, 70)).points() {
let should_contain =
expected.bounding_box().contains(point) && expected.get_pixel(point).is_some();
assert_eq!(
triangle.contains(point),
should_contain,
"{:?}, {:?}",
point,
triangle
);
}
}
}
#[test]
fn colinear_never_contains() {
let triangles = [
Triangle::new(Point::new(5, 10), Point::new(15, 20), Point::new(10, 15)),
Triangle::new(Point::new(2, 2), Point::new(2, 4), Point::new(2, 4)),
Triangle::new(Point::new(2, 2), Point::new(4, 2), Point::new(4, 2)),
];
for triangle in triangles.iter() {
for point in Rectangle::new(Point::new(-5, -5), Size::new(70, 70)).points() {
assert_eq!(triangle.contains(point), false);
}
}
}
#[test]
#[should_panic(expected = "source slice length (2) must equal 3")]
fn slice_panic_too_short() {
let points = [Point::zero(), Point::zero()];
Triangle::from_slice(&points);
}
#[test]
#[should_panic(expected = "source slice length (4) must equal 3")]
fn slice_panic_too_long() {
let points = [Point::zero(), Point::zero(), Point::zero(), Point::zero()];
Triangle::from_slice(&points);
}
#[test]
fn slice_just_right() {
let points = [
Point::new_equal(1),
Point::new_equal(2),
Point::new_equal(3),
];
assert_eq!(
Triangle::from_slice(&points),
Triangle::new(
Point::new_equal(1),
Point::new_equal(2),
Point::new_equal(3)
)
);
}
#[test]
fn check_collapsed() {
let triangle = Triangle::new(Point::new(10, 10), Point::new(30, 20), Point::new(20, 25));
assert_eq!(triangle.is_collapsed(20, StrokeOffset::None), true);
}
}