1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
// SPDX-FileCopyrightText: 2017 - 2023 Kamila Borowska <kamila@borowska.pw>
// SPDX-FileCopyrightText: 2019 Riey <creeper844@gmail.com>
// SPDX-FileCopyrightText: 2021 Alex Sayers <alex@asayers.com>
// SPDX-FileCopyrightText: 2021 Bruno Corrêa Zimmermann <brunoczim@gmail.com>
// SPDX-FileCopyrightText: 2022 Cass Fridkin <cass@cloudflare.com>
// SPDX-FileCopyrightText: 2022 Mateusz Kowalczyk <fuuzetsu@fuuzetsu.co.uk>
//
// SPDX-License-Identifier: MIT OR Apache-2.0

//! An enum mapping type.
//!
//! It is implemented using an array type, so using it is as fast as using Rust
//! arrays.
//!
//! # Examples
//!
//! ```
//! use enum_map::{enum_map, Enum, EnumMap};
//!
//! #[derive(Debug, Enum)]
//! enum Example {
//!     A(bool),
//!     B,
//!     C,
//! }
//!
//! let mut map = enum_map! {
//!     Example::A(false) => 0,
//!     Example::A(true) => 1,
//!     Example::B => 2,
//!     Example::C => 3,
//! };
//! map[Example::C] = 4;
//!
//! assert_eq!(map[Example::A(true)], 1);
//!
//! for (key, &value) in &map {
//!     println!("{:?} has {} as value.", key, value);
//! }
//! ```

#![no_std]
#![deny(missing_docs)]
#![warn(clippy::pedantic)]

#[cfg(feature = "arbitrary")]
mod arbitrary;
mod enum_map_impls;
mod internal;
mod iter;
#[cfg(feature = "serde")]
mod serde;

#[doc(hidden)]
pub use core::mem::{self, ManuallyDrop, MaybeUninit};
#[doc(hidden)]
pub use core::primitive::usize;
use core::slice;
#[doc(hidden)]
// unreachable needs to be exported for compatibility with older versions of enum-map-derive
pub use core::{panic, ptr, unreachable};
pub use enum_map_derive::Enum;
#[doc(hidden)]
pub use internal::out_of_bounds;
use internal::Array;
pub use internal::{Enum, EnumArray};
pub use iter::{IntoIter, IntoValues, Iter, IterMut, Values, ValuesMut};

// SAFETY: initialized needs to represent number of initialized elements
#[doc(hidden)]
pub struct Guard<'a, K, V>
where
    K: EnumArray<V>,
{
    array_mut: &'a mut MaybeUninit<K::Array>,
    initialized: usize,
}

impl<K, V> Drop for Guard<'_, K, V>
where
    K: EnumArray<V>,
{
    fn drop(&mut self) {
        // This is safe as arr[..len] is initialized due to
        // Guard's type invariant.
        unsafe {
            ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.initialized).drop_in_place();
        }
    }
}

impl<'a, K, V> Guard<'a, K, V>
where
    K: EnumArray<V>,
{
    #[doc(hidden)]
    pub fn as_mut_ptr(&mut self) -> *mut V {
        self.array_mut.as_mut_ptr().cast::<V>()
    }

    #[doc(hidden)]
    #[must_use]
    pub fn new(array_mut: &'a mut MaybeUninit<K::Array>) -> Self {
        Self {
            array_mut,
            initialized: 0,
        }
    }

    #[doc(hidden)]
    #[must_use]
    #[allow(clippy::unused_self)]
    pub fn storage_length(&self) -> usize {
        // SAFETY: We need to use LENGTH from K::Array, as K::LENGTH is
        // untrustworthy.
        K::Array::LENGTH
    }

    #[doc(hidden)]
    #[must_use]
    pub fn get_key(&self) -> K {
        K::from_usize(self.initialized)
    }

    #[doc(hidden)]
    // Unsafe as it can write out of bounds.
    pub unsafe fn push(&mut self, value: V) {
        self.as_mut_ptr().add(self.initialized).write(value);
        self.initialized += 1;
    }
}

#[doc(hidden)]
pub struct TypeEqualizer<'a, K, V>
where
    K: EnumArray<V>,
{
    pub enum_map: [EnumMap<K, V>; 0],
    pub guard: Guard<'a, K, V>,
}

/// Enum map constructor.
///
/// This macro allows to create a new enum map in a type safe way. It takes
/// a list of `,` separated pairs separated by `=>`. Left side is `|`
/// separated list of enum keys, or `_` to match all unmatched enum keys,
/// while right side is a value.
///
/// The iteration order when using this macro is not guaranteed to be
/// consistent. Future releases of this crate may change it, and this is not
/// considered to be a breaking change.
///
/// # Examples
///
/// ```
/// use enum_map::{enum_map, Enum};
///
/// #[derive(Enum)]
/// enum Example {
///     A,
///     B,
///     C,
///     D,
/// }
///
/// let enum_map = enum_map! {
///     Example::A | Example::B => 1,
///     Example::C => 2,
///     _ => 3,
/// };
/// assert_eq!(enum_map[Example::A], 1);
/// assert_eq!(enum_map[Example::B], 1);
/// assert_eq!(enum_map[Example::C], 2);
/// assert_eq!(enum_map[Example::D], 3);
/// ```
#[macro_export]
macro_rules! enum_map {
    {$($t:tt)*} => {{
        let mut uninit = $crate::MaybeUninit::uninit();
        let mut eq = $crate::TypeEqualizer {
            enum_map: [],
            guard: $crate::Guard::new(&mut uninit),
        };
        if false {
            // Safe because this code is unreachable
            unsafe { (&mut eq.enum_map).as_mut_ptr().read() }
        } else {
            for _ in 0..(&eq.guard).storage_length() {
                struct __PleaseDoNotUseBreakWithoutLabel;
                let _please_do_not_use_continue_without_label;
                let value;
                #[allow(unreachable_code)]
                loop {
                    _please_do_not_use_continue_without_label = ();
                    value = match (&eq.guard).get_key() { $($t)* };
                    break __PleaseDoNotUseBreakWithoutLabel;
                };

                unsafe { (&mut eq.guard).push(value); }
            }
            $crate::mem::forget(eq);
            // Safe because the array was fully initialized.
            $crate::EnumMap::from_array(unsafe { uninit.assume_init() })
        }
    }};
}

/// An enum mapping.
///
/// This internally uses an array which stores a value for each possible
/// enum value. To work, it requires implementation of internal (private,
/// although public due to macro limitations) trait which allows extracting
/// information about an enum, which can be automatically generated using
/// `#[derive(Enum)]` macro.
///
/// Additionally, `bool` and `u8` automatically derives from `Enum`. While
/// `u8` is not technically an enum, it's convenient to consider it like one.
/// In particular, [reverse-complement in benchmark game] could be using `u8`
/// as an enum.
///
/// # Examples
///
/// ```
/// use enum_map::{enum_map, Enum, EnumMap};
///
/// #[derive(Enum)]
/// enum Example {
///     A,
///     B,
///     C,
/// }
///
/// let mut map = EnumMap::default();
/// // new initializes map with default values
/// assert_eq!(map[Example::A], 0);
/// map[Example::A] = 3;
/// assert_eq!(map[Example::A], 3);
/// ```
///
/// [reverse-complement in benchmark game]:
///     http://benchmarksgame.alioth.debian.org/u64q/program.php?test=revcomp&lang=rust&id=2
pub struct EnumMap<K: EnumArray<V>, V> {
    array: K::Array,
}

impl<K: EnumArray<V>, V: Default> EnumMap<K, V> {
    /// Clear enum map with default values.
    ///
    /// # Examples
    ///
    /// ```
    /// use enum_map::{Enum, EnumMap};
    ///
    /// #[derive(Enum)]
    /// enum Example {
    ///     A,
    ///     B,
    /// }
    ///
    /// let mut enum_map = EnumMap::<_, String>::default();
    /// enum_map[Example::B] = "foo".into();
    /// enum_map.clear();
    /// assert_eq!(enum_map[Example::A], "");
    /// assert_eq!(enum_map[Example::B], "");
    /// ```
    #[inline]
    pub fn clear(&mut self) {
        for v in self.as_mut_slice() {
            *v = V::default();
        }
    }
}

#[allow(clippy::len_without_is_empty)]
impl<K: EnumArray<V>, V> EnumMap<K, V> {
    /// Creates an enum map from array.
    #[inline]
    pub const fn from_array(array: K::Array) -> EnumMap<K, V> {
        EnumMap { array }
    }

    /// Create an enum map, where each value is the returned value from `cb`
    /// using provided enum key.
    ///
    /// ```
    /// # use enum_map_derive::*;
    /// use enum_map::{enum_map, Enum, EnumMap};
    ///
    /// #[derive(Enum, PartialEq, Debug)]
    /// enum Example {
    ///     A,
    ///     B,
    /// }
    ///
    /// let map = EnumMap::from_fn(|k| k == Example::A);
    /// assert_eq!(map, enum_map! { Example::A => true, Example::B => false })
    /// ```
    pub fn from_fn<F>(mut cb: F) -> Self
    where
        F: FnMut(K) -> V,
    {
        enum_map! { k => cb(k) }
    }

    /// Returns an iterator over enum map.
    ///
    /// The iteration order is deterministic, and when using [macro@Enum] derive
    /// it will be the order in which enum variants are declared.
    ///
    /// # Examples
    ///
    /// ```
    /// use enum_map::{enum_map, Enum};
    ///
    /// #[derive(Enum, PartialEq)]
    /// enum E {
    ///     A,
    ///     B,
    ///     C,
    /// }
    ///
    /// let map = enum_map! { E::A => 1, E::B => 2, E::C => 3};
    /// assert!(map.iter().eq([(E::A, &1), (E::B, &2), (E::C, &3)]));
    /// ```
    #[inline]
    pub fn iter(&self) -> Iter<K, V> {
        self.into_iter()
    }

    /// Returns a mutable iterator over enum map.
    #[inline]
    pub fn iter_mut(&mut self) -> IterMut<K, V> {
        self.into_iter()
    }

    /// Returns number of elements in enum map.
    #[inline]
    #[allow(clippy::unused_self)]
    pub const fn len(&self) -> usize {
        K::Array::LENGTH
    }

    /// Swaps two indexes.
    ///
    /// # Examples
    ///
    /// ```
    /// use enum_map::enum_map;
    ///
    /// let mut map = enum_map! { false => 0, true => 1 };
    /// map.swap(false, true);
    /// assert_eq!(map[false], 1);
    /// assert_eq!(map[true], 0);
    /// ```
    #[inline]
    pub fn swap(&mut self, a: K, b: K) {
        self.as_mut_slice().swap(a.into_usize(), b.into_usize());
    }

    /// Consumes an enum map and returns the underlying array.
    ///
    /// The order of elements is deterministic, and when using [macro@Enum]
    /// derive it will be the order in which enum variants are declared.
    ///
    /// # Examples
    ///
    /// ```
    /// use enum_map::{enum_map, Enum};
    ///
    /// #[derive(Enum, PartialEq)]
    /// enum E {
    ///     A,
    ///     B,
    ///     C,
    /// }
    ///
    /// let map = enum_map! { E::A => 1, E::B => 2, E::C => 3};
    /// assert_eq!(map.into_array(), [1, 2, 3]);
    /// ```
    pub fn into_array(self) -> K::Array {
        self.array
    }

    /// Returns a reference to the underlying array.
    ///
    /// The order of elements is deterministic, and when using [macro@Enum]
    /// derive it will be the order in which enum variants are declared.
    ///
    /// # Examples
    ///
    /// ```
    /// use enum_map::{enum_map, Enum};
    ///
    /// #[derive(Enum, PartialEq)]
    /// enum E {
    ///     A,
    ///     B,
    ///     C,
    /// }
    ///
    /// let map = enum_map! { E::A => 1, E::B => 2, E::C => 3};
    /// assert_eq!(map.as_array(), &[1, 2, 3]);
    /// ```
    pub const fn as_array(&self) -> &K::Array {
        &self.array
    }

    /// Returns a mutable reference to the underlying array.
    ///
    /// The order of elements is deterministic, and when using [macro@Enum]
    /// derive it will be the order in which enum variants are declared.
    ///
    /// # Examples
    ///
    /// ```
    /// use enum_map::{enum_map, Enum};
    ///
    /// #[derive(Enum, PartialEq)]
    /// enum E {
    ///     A,
    ///     B,
    ///     C,
    /// }
    ///
    /// let mut map = enum_map! { E::A => 1, E::B => 2, E::C => 3};
    /// map.as_mut_array()[1] = 42;
    /// assert_eq!(map.as_array(), &[1, 42, 3]);
    /// ```
    pub fn as_mut_array(&mut self) -> &mut K::Array {
        &mut self.array
    }

    /// Converts an enum map to a slice representing values.
    ///
    /// The order of elements is deterministic, and when using [macro@Enum]
    /// derive it will be the order in which enum variants are declared.
    ///
    /// # Examples
    ///
    /// ```
    /// use enum_map::{enum_map, Enum};
    ///
    /// #[derive(Enum, PartialEq)]
    /// enum E {
    ///     A,
    ///     B,
    ///     C,
    /// }
    ///
    /// let map = enum_map! { E::A => 1, E::B => 2, E::C => 3};
    /// assert_eq!(map.as_slice(), &[1, 2, 3]);
    /// ```
    #[inline]
    pub fn as_slice(&self) -> &[V] {
        unsafe { slice::from_raw_parts(ptr::addr_of!(self.array).cast(), K::Array::LENGTH) }
    }

    /// Converts a mutable enum map to a mutable slice representing values.
    #[inline]
    pub fn as_mut_slice(&mut self) -> &mut [V] {
        unsafe { slice::from_raw_parts_mut(ptr::addr_of_mut!(self.array).cast(), K::Array::LENGTH) }
    }

    /// Returns an enum map with function `f` applied to each element in order.
    ///
    /// # Examples
    ///
    /// ```
    /// use enum_map::enum_map;
    ///
    /// let a = enum_map! { false => 0, true => 1 };
    /// let b = a.map(|_, x| f64::from(x) + 0.5);
    /// assert_eq!(b, enum_map! { false => 0.5, true => 1.5 });
    /// ```
    pub fn map<F, T>(self, mut f: F) -> EnumMap<K, T>
    where
        F: FnMut(K, V) -> T,
        K: EnumArray<T>,
    {
        struct DropOnPanic<K, V>
        where
            K: EnumArray<V>,
        {
            position: usize,
            map: ManuallyDrop<EnumMap<K, V>>,
        }
        impl<K, V> Drop for DropOnPanic<K, V>
        where
            K: EnumArray<V>,
        {
            fn drop(&mut self) {
                unsafe {
                    ptr::drop_in_place(&mut self.map.as_mut_slice()[self.position..]);
                }
            }
        }
        let mut drop_protect = DropOnPanic {
            position: 0,
            map: ManuallyDrop::new(self),
        };
        enum_map! {
            k => {
                let value = unsafe { ptr::read(&drop_protect.map.as_slice()[drop_protect.position]) };
                drop_protect.position += 1;
                f(k, value)
            }
        }
    }
}