epaint/tessellator.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
//! Converts graphics primitives into textured triangles.
//!
//! This module converts lines, circles, text and more represented by [`Shape`]
//! into textured triangles represented by [`Mesh`].
#![allow(clippy::identity_op)]
use emath::{pos2, remap, vec2, GuiRounding as _, NumExt, Pos2, Rect, Rot2, Vec2};
use crate::{
color::ColorMode, emath, stroke::PathStroke, texture_atlas::PreparedDisc, CircleShape,
ClippedPrimitive, ClippedShape, Color32, CornerRadiusF32, CubicBezierShape, EllipseShape, Mesh,
PathShape, Primitive, QuadraticBezierShape, RectShape, Shape, Stroke, StrokeKind, TextShape,
TextureId, Vertex, WHITE_UV,
};
// ----------------------------------------------------------------------------
#[allow(clippy::approx_constant)]
mod precomputed_vertices {
// fn main() {
// let n = 64;
// println!("pub const CIRCLE_{}: [Vec2; {}] = [", n, n+1);
// for i in 0..=n {
// let a = std::f64::consts::TAU * i as f64 / n as f64;
// println!(" vec2({:.06}, {:.06}),", a.cos(), a.sin());
// }
// println!("];")
// }
use emath::{vec2, Vec2};
pub const CIRCLE_8: [Vec2; 9] = [
vec2(1.000000, 0.000000),
vec2(0.707107, 0.707107),
vec2(0.000000, 1.000000),
vec2(-0.707107, 0.707107),
vec2(-1.000000, 0.000000),
vec2(-0.707107, -0.707107),
vec2(0.000000, -1.000000),
vec2(0.707107, -0.707107),
vec2(1.000000, 0.000000),
];
pub const CIRCLE_16: [Vec2; 17] = [
vec2(1.000000, 0.000000),
vec2(0.923880, 0.382683),
vec2(0.707107, 0.707107),
vec2(0.382683, 0.923880),
vec2(0.000000, 1.000000),
vec2(-0.382684, 0.923880),
vec2(-0.707107, 0.707107),
vec2(-0.923880, 0.382683),
vec2(-1.000000, 0.000000),
vec2(-0.923880, -0.382683),
vec2(-0.707107, -0.707107),
vec2(-0.382684, -0.923880),
vec2(0.000000, -1.000000),
vec2(0.382684, -0.923879),
vec2(0.707107, -0.707107),
vec2(0.923880, -0.382683),
vec2(1.000000, 0.000000),
];
pub const CIRCLE_32: [Vec2; 33] = [
vec2(1.000000, 0.000000),
vec2(0.980785, 0.195090),
vec2(0.923880, 0.382683),
vec2(0.831470, 0.555570),
vec2(0.707107, 0.707107),
vec2(0.555570, 0.831470),
vec2(0.382683, 0.923880),
vec2(0.195090, 0.980785),
vec2(0.000000, 1.000000),
vec2(-0.195090, 0.980785),
vec2(-0.382683, 0.923880),
vec2(-0.555570, 0.831470),
vec2(-0.707107, 0.707107),
vec2(-0.831470, 0.555570),
vec2(-0.923880, 0.382683),
vec2(-0.980785, 0.195090),
vec2(-1.000000, 0.000000),
vec2(-0.980785, -0.195090),
vec2(-0.923880, -0.382683),
vec2(-0.831470, -0.555570),
vec2(-0.707107, -0.707107),
vec2(-0.555570, -0.831470),
vec2(-0.382683, -0.923880),
vec2(-0.195090, -0.980785),
vec2(-0.000000, -1.000000),
vec2(0.195090, -0.980785),
vec2(0.382683, -0.923880),
vec2(0.555570, -0.831470),
vec2(0.707107, -0.707107),
vec2(0.831470, -0.555570),
vec2(0.923880, -0.382683),
vec2(0.980785, -0.195090),
vec2(1.000000, -0.000000),
];
pub const CIRCLE_64: [Vec2; 65] = [
vec2(1.000000, 0.000000),
vec2(0.995185, 0.098017),
vec2(0.980785, 0.195090),
vec2(0.956940, 0.290285),
vec2(0.923880, 0.382683),
vec2(0.881921, 0.471397),
vec2(0.831470, 0.555570),
vec2(0.773010, 0.634393),
vec2(0.707107, 0.707107),
vec2(0.634393, 0.773010),
vec2(0.555570, 0.831470),
vec2(0.471397, 0.881921),
vec2(0.382683, 0.923880),
vec2(0.290285, 0.956940),
vec2(0.195090, 0.980785),
vec2(0.098017, 0.995185),
vec2(0.000000, 1.000000),
vec2(-0.098017, 0.995185),
vec2(-0.195090, 0.980785),
vec2(-0.290285, 0.956940),
vec2(-0.382683, 0.923880),
vec2(-0.471397, 0.881921),
vec2(-0.555570, 0.831470),
vec2(-0.634393, 0.773010),
vec2(-0.707107, 0.707107),
vec2(-0.773010, 0.634393),
vec2(-0.831470, 0.555570),
vec2(-0.881921, 0.471397),
vec2(-0.923880, 0.382683),
vec2(-0.956940, 0.290285),
vec2(-0.980785, 0.195090),
vec2(-0.995185, 0.098017),
vec2(-1.000000, 0.000000),
vec2(-0.995185, -0.098017),
vec2(-0.980785, -0.195090),
vec2(-0.956940, -0.290285),
vec2(-0.923880, -0.382683),
vec2(-0.881921, -0.471397),
vec2(-0.831470, -0.555570),
vec2(-0.773010, -0.634393),
vec2(-0.707107, -0.707107),
vec2(-0.634393, -0.773010),
vec2(-0.555570, -0.831470),
vec2(-0.471397, -0.881921),
vec2(-0.382683, -0.923880),
vec2(-0.290285, -0.956940),
vec2(-0.195090, -0.980785),
vec2(-0.098017, -0.995185),
vec2(-0.000000, -1.000000),
vec2(0.098017, -0.995185),
vec2(0.195090, -0.980785),
vec2(0.290285, -0.956940),
vec2(0.382683, -0.923880),
vec2(0.471397, -0.881921),
vec2(0.555570, -0.831470),
vec2(0.634393, -0.773010),
vec2(0.707107, -0.707107),
vec2(0.773010, -0.634393),
vec2(0.831470, -0.555570),
vec2(0.881921, -0.471397),
vec2(0.923880, -0.382683),
vec2(0.956940, -0.290285),
vec2(0.980785, -0.195090),
vec2(0.995185, -0.098017),
vec2(1.000000, -0.000000),
];
pub const CIRCLE_128: [Vec2; 129] = [
vec2(1.000000, 0.000000),
vec2(0.998795, 0.049068),
vec2(0.995185, 0.098017),
vec2(0.989177, 0.146730),
vec2(0.980785, 0.195090),
vec2(0.970031, 0.242980),
vec2(0.956940, 0.290285),
vec2(0.941544, 0.336890),
vec2(0.923880, 0.382683),
vec2(0.903989, 0.427555),
vec2(0.881921, 0.471397),
vec2(0.857729, 0.514103),
vec2(0.831470, 0.555570),
vec2(0.803208, 0.595699),
vec2(0.773010, 0.634393),
vec2(0.740951, 0.671559),
vec2(0.707107, 0.707107),
vec2(0.671559, 0.740951),
vec2(0.634393, 0.773010),
vec2(0.595699, 0.803208),
vec2(0.555570, 0.831470),
vec2(0.514103, 0.857729),
vec2(0.471397, 0.881921),
vec2(0.427555, 0.903989),
vec2(0.382683, 0.923880),
vec2(0.336890, 0.941544),
vec2(0.290285, 0.956940),
vec2(0.242980, 0.970031),
vec2(0.195090, 0.980785),
vec2(0.146730, 0.989177),
vec2(0.098017, 0.995185),
vec2(0.049068, 0.998795),
vec2(0.000000, 1.000000),
vec2(-0.049068, 0.998795),
vec2(-0.098017, 0.995185),
vec2(-0.146730, 0.989177),
vec2(-0.195090, 0.980785),
vec2(-0.242980, 0.970031),
vec2(-0.290285, 0.956940),
vec2(-0.336890, 0.941544),
vec2(-0.382683, 0.923880),
vec2(-0.427555, 0.903989),
vec2(-0.471397, 0.881921),
vec2(-0.514103, 0.857729),
vec2(-0.555570, 0.831470),
vec2(-0.595699, 0.803208),
vec2(-0.634393, 0.773010),
vec2(-0.671559, 0.740951),
vec2(-0.707107, 0.707107),
vec2(-0.740951, 0.671559),
vec2(-0.773010, 0.634393),
vec2(-0.803208, 0.595699),
vec2(-0.831470, 0.555570),
vec2(-0.857729, 0.514103),
vec2(-0.881921, 0.471397),
vec2(-0.903989, 0.427555),
vec2(-0.923880, 0.382683),
vec2(-0.941544, 0.336890),
vec2(-0.956940, 0.290285),
vec2(-0.970031, 0.242980),
vec2(-0.980785, 0.195090),
vec2(-0.989177, 0.146730),
vec2(-0.995185, 0.098017),
vec2(-0.998795, 0.049068),
vec2(-1.000000, 0.000000),
vec2(-0.998795, -0.049068),
vec2(-0.995185, -0.098017),
vec2(-0.989177, -0.146730),
vec2(-0.980785, -0.195090),
vec2(-0.970031, -0.242980),
vec2(-0.956940, -0.290285),
vec2(-0.941544, -0.336890),
vec2(-0.923880, -0.382683),
vec2(-0.903989, -0.427555),
vec2(-0.881921, -0.471397),
vec2(-0.857729, -0.514103),
vec2(-0.831470, -0.555570),
vec2(-0.803208, -0.595699),
vec2(-0.773010, -0.634393),
vec2(-0.740951, -0.671559),
vec2(-0.707107, -0.707107),
vec2(-0.671559, -0.740951),
vec2(-0.634393, -0.773010),
vec2(-0.595699, -0.803208),
vec2(-0.555570, -0.831470),
vec2(-0.514103, -0.857729),
vec2(-0.471397, -0.881921),
vec2(-0.427555, -0.903989),
vec2(-0.382683, -0.923880),
vec2(-0.336890, -0.941544),
vec2(-0.290285, -0.956940),
vec2(-0.242980, -0.970031),
vec2(-0.195090, -0.980785),
vec2(-0.146730, -0.989177),
vec2(-0.098017, -0.995185),
vec2(-0.049068, -0.998795),
vec2(-0.000000, -1.000000),
vec2(0.049068, -0.998795),
vec2(0.098017, -0.995185),
vec2(0.146730, -0.989177),
vec2(0.195090, -0.980785),
vec2(0.242980, -0.970031),
vec2(0.290285, -0.956940),
vec2(0.336890, -0.941544),
vec2(0.382683, -0.923880),
vec2(0.427555, -0.903989),
vec2(0.471397, -0.881921),
vec2(0.514103, -0.857729),
vec2(0.555570, -0.831470),
vec2(0.595699, -0.803208),
vec2(0.634393, -0.773010),
vec2(0.671559, -0.740951),
vec2(0.707107, -0.707107),
vec2(0.740951, -0.671559),
vec2(0.773010, -0.634393),
vec2(0.803208, -0.595699),
vec2(0.831470, -0.555570),
vec2(0.857729, -0.514103),
vec2(0.881921, -0.471397),
vec2(0.903989, -0.427555),
vec2(0.923880, -0.382683),
vec2(0.941544, -0.336890),
vec2(0.956940, -0.290285),
vec2(0.970031, -0.242980),
vec2(0.980785, -0.195090),
vec2(0.989177, -0.146730),
vec2(0.995185, -0.098017),
vec2(0.998795, -0.049068),
vec2(1.000000, -0.000000),
];
}
// ----------------------------------------------------------------------------
#[derive(Clone, Copy, Debug, Default, PartialEq)]
struct PathPoint {
pos: Pos2,
/// For filled paths the normal is used for anti-aliasing (both strokes and filled areas).
///
/// For strokes the normal is also used for giving thickness to the path
/// (i.e. in what direction to expand).
///
/// The normal could be estimated by differences between successive points,
/// but that would be less accurate (and in some cases slower).
///
/// Normals are normally unit-length.
normal: Vec2,
}
/// A connected line (without thickness or gaps) which can be tessellated
/// to either to a stroke (with thickness) or a filled convex area.
/// Used as a scratch-pad during tessellation.
#[derive(Clone, Debug, Default)]
pub struct Path(Vec<PathPoint>);
impl Path {
#[inline(always)]
pub fn clear(&mut self) {
self.0.clear();
}
#[inline(always)]
pub fn reserve(&mut self, additional: usize) {
self.0.reserve(additional);
}
#[inline(always)]
pub fn add_point(&mut self, pos: Pos2, normal: Vec2) {
self.0.push(PathPoint { pos, normal });
}
pub fn add_circle(&mut self, center: Pos2, radius: f32) {
use precomputed_vertices::{CIRCLE_128, CIRCLE_16, CIRCLE_32, CIRCLE_64, CIRCLE_8};
// These cutoffs are based on a high-dpi display. TODO(emilk): use pixels_per_point here?
// same cutoffs as in add_circle_quadrant
if radius <= 2.0 {
self.0.extend(CIRCLE_8.iter().map(|&n| PathPoint {
pos: center + radius * n,
normal: n,
}));
} else if radius <= 5.0 {
self.0.extend(CIRCLE_16.iter().map(|&n| PathPoint {
pos: center + radius * n,
normal: n,
}));
} else if radius < 18.0 {
self.0.extend(CIRCLE_32.iter().map(|&n| PathPoint {
pos: center + radius * n,
normal: n,
}));
} else if radius < 50.0 {
self.0.extend(CIRCLE_64.iter().map(|&n| PathPoint {
pos: center + radius * n,
normal: n,
}));
} else {
self.0.extend(CIRCLE_128.iter().map(|&n| PathPoint {
pos: center + radius * n,
normal: n,
}));
}
}
pub fn add_line_segment(&mut self, points: [Pos2; 2]) {
self.reserve(2);
let normal = (points[1] - points[0]).normalized().rot90();
self.add_point(points[0], normal);
self.add_point(points[1], normal);
}
pub fn add_open_points(&mut self, points: &[Pos2]) {
let n = points.len();
assert!(n >= 2);
if n == 2 {
// Common case optimization:
self.add_line_segment([points[0], points[1]]);
} else {
self.reserve(n);
self.add_point(points[0], (points[1] - points[0]).normalized().rot90());
let mut n0 = (points[1] - points[0]).normalized().rot90();
for i in 1..n - 1 {
let mut n1 = (points[i + 1] - points[i]).normalized().rot90();
// Handle duplicated points (but not triplicated…):
if n0 == Vec2::ZERO {
n0 = n1;
} else if n1 == Vec2::ZERO {
n1 = n0;
}
let normal = (n0 + n1) / 2.0;
let length_sq = normal.length_sq();
let right_angle_length_sq = 0.5;
let sharper_than_a_right_angle = length_sq < right_angle_length_sq;
if sharper_than_a_right_angle {
// cut off the sharp corner
let center_normal = normal.normalized();
let n0c = (n0 + center_normal) / 2.0;
let n1c = (n1 + center_normal) / 2.0;
self.add_point(points[i], n0c / n0c.length_sq());
self.add_point(points[i], n1c / n1c.length_sq());
} else {
// miter join
self.add_point(points[i], normal / length_sq);
}
n0 = n1;
}
self.add_point(
points[n - 1],
(points[n - 1] - points[n - 2]).normalized().rot90(),
);
}
}
pub fn add_line_loop(&mut self, points: &[Pos2]) {
let n = points.len();
assert!(n >= 2);
self.reserve(n);
let mut n0 = (points[0] - points[n - 1]).normalized().rot90();
for i in 0..n {
let next_i = if i + 1 == n { 0 } else { i + 1 };
let mut n1 = (points[next_i] - points[i]).normalized().rot90();
// Handle duplicated points (but not triplicated…):
if n0 == Vec2::ZERO {
n0 = n1;
} else if n1 == Vec2::ZERO {
n1 = n0;
}
let normal = (n0 + n1) / 2.0;
let length_sq = normal.length_sq();
// We can't just cut off corners for filled shapes like this,
// because the feather will both expand and contract the corner along the provided normals
// to make sure it doesn't grow, and the shrinking will make the inner points cross each other.
//
// A better approach is to shrink the vertices in by half the feather-width here
// and then only expand during feathering.
//
// See https://github.com/emilk/egui/issues/1226
const CUT_OFF_SHARP_CORNERS: bool = false;
let right_angle_length_sq = 0.5;
let sharper_than_a_right_angle = length_sq < right_angle_length_sq;
if CUT_OFF_SHARP_CORNERS && sharper_than_a_right_angle {
// cut off the sharp corner
let center_normal = normal.normalized();
let n0c = (n0 + center_normal) / 2.0;
let n1c = (n1 + center_normal) / 2.0;
self.add_point(points[i], n0c / n0c.length_sq());
self.add_point(points[i], n1c / n1c.length_sq());
} else {
// miter join
self.add_point(points[i], normal / length_sq);
}
n0 = n1;
}
}
/// The path is taken to be closed (i.e. returning to the start again).
///
/// Calling this may reverse the vertices in the path if they are wrong winding order.
/// The preferred winding order is clockwise.
pub fn fill_and_stroke(
&mut self,
feathering: f32,
fill: Color32,
stroke: &PathStroke,
out: &mut Mesh,
) {
stroke_and_fill_path(feathering, &mut self.0, PathType::Closed, stroke, fill, out);
}
/// Open-ended.
pub fn stroke_open(&mut self, feathering: f32, stroke: &PathStroke, out: &mut Mesh) {
stroke_path(feathering, &mut self.0, PathType::Open, stroke, out);
}
/// A closed path (returning to the first point).
pub fn stroke_closed(&mut self, feathering: f32, stroke: &PathStroke, out: &mut Mesh) {
stroke_path(feathering, &mut self.0, PathType::Closed, stroke, out);
}
pub fn stroke(
&mut self,
feathering: f32,
path_type: PathType,
stroke: &PathStroke,
out: &mut Mesh,
) {
stroke_path(feathering, &mut self.0, path_type, stroke, out);
}
/// The path is taken to be closed (i.e. returning to the start again).
///
/// Calling this may reverse the vertices in the path if they are wrong winding order.
/// The preferred winding order is clockwise.
pub fn fill(&mut self, feathering: f32, color: Color32, out: &mut Mesh) {
fill_closed_path(feathering, &mut self.0, color, out);
}
/// Like [`Self::fill`] but with texturing.
///
/// The `uv_from_pos` is called for each vertex position.
pub fn fill_with_uv(
&mut self,
feathering: f32,
color: Color32,
texture_id: TextureId,
uv_from_pos: impl Fn(Pos2) -> Pos2,
out: &mut Mesh,
) {
fill_closed_path_with_uv(feathering, &mut self.0, color, texture_id, uv_from_pos, out);
}
}
pub mod path {
//! Helpers for constructing paths
use crate::CornerRadiusF32;
use emath::{pos2, Pos2, Rect};
/// overwrites existing points
pub fn rounded_rectangle(path: &mut Vec<Pos2>, rect: Rect, cr: CornerRadiusF32) {
path.clear();
let min = rect.min;
let max = rect.max;
let cr = clamp_corner_radius(cr, rect);
if cr == CornerRadiusF32::ZERO {
path.reserve(4);
path.push(pos2(min.x, min.y)); // left top
path.push(pos2(max.x, min.y)); // right top
path.push(pos2(max.x, max.y)); // right bottom
path.push(pos2(min.x, max.y)); // left bottom
} else {
// We need to avoid duplicated vertices, because that leads to visual artifacts later.
// Duplicated vertices can happen when one side is all rounding, with no straight edge between.
let eps = f32::EPSILON * rect.size().max_elem();
add_circle_quadrant(path, pos2(max.x - cr.se, max.y - cr.se), cr.se, 0.0); // south east
if rect.width() <= cr.se + cr.sw + eps {
path.pop(); // avoid duplicated vertex
}
add_circle_quadrant(path, pos2(min.x + cr.sw, max.y - cr.sw), cr.sw, 1.0); // south west
if rect.height() <= cr.sw + cr.nw + eps {
path.pop(); // avoid duplicated vertex
}
add_circle_quadrant(path, pos2(min.x + cr.nw, min.y + cr.nw), cr.nw, 2.0); // north west
if rect.width() <= cr.nw + cr.ne + eps {
path.pop(); // avoid duplicated vertex
}
add_circle_quadrant(path, pos2(max.x - cr.ne, min.y + cr.ne), cr.ne, 3.0); // north east
if rect.height() <= cr.ne + cr.se + eps {
path.pop(); // avoid duplicated vertex
}
}
}
/// Add one quadrant of a circle
///
/// * quadrant 0: right bottom
/// * quadrant 1: left bottom
/// * quadrant 2: left top
/// * quadrant 3: right top
//
// Derivation:
//
// * angle 0 * TAU / 4 = right
// - quadrant 0: right bottom
// * angle 1 * TAU / 4 = bottom
// - quadrant 1: left bottom
// * angle 2 * TAU / 4 = left
// - quadrant 2: left top
// * angle 3 * TAU / 4 = top
// - quadrant 3: right top
// * angle 4 * TAU / 4 = right
pub fn add_circle_quadrant(path: &mut Vec<Pos2>, center: Pos2, radius: f32, quadrant: f32) {
use super::precomputed_vertices::{CIRCLE_128, CIRCLE_16, CIRCLE_32, CIRCLE_64, CIRCLE_8};
// These cutoffs are based on a high-dpi display. TODO(emilk): use pixels_per_point here?
// same cutoffs as in add_circle
if radius <= 0.0 {
path.push(center);
} else if radius <= 2.0 {
let offset = quadrant as usize * 2;
let quadrant_vertices = &CIRCLE_8[offset..=offset + 2];
path.extend(quadrant_vertices.iter().map(|&n| center + radius * n));
} else if radius <= 5.0 {
let offset = quadrant as usize * 4;
let quadrant_vertices = &CIRCLE_16[offset..=offset + 4];
path.extend(quadrant_vertices.iter().map(|&n| center + radius * n));
} else if radius < 18.0 {
let offset = quadrant as usize * 8;
let quadrant_vertices = &CIRCLE_32[offset..=offset + 8];
path.extend(quadrant_vertices.iter().map(|&n| center + radius * n));
} else if radius < 50.0 {
let offset = quadrant as usize * 16;
let quadrant_vertices = &CIRCLE_64[offset..=offset + 16];
path.extend(quadrant_vertices.iter().map(|&n| center + radius * n));
} else {
let offset = quadrant as usize * 32;
let quadrant_vertices = &CIRCLE_128[offset..=offset + 32];
path.extend(quadrant_vertices.iter().map(|&n| center + radius * n));
}
}
// Ensures the radius of each corner is within a valid range
fn clamp_corner_radius(cr: CornerRadiusF32, rect: Rect) -> CornerRadiusF32 {
let half_width = rect.width() * 0.5;
let half_height = rect.height() * 0.5;
let max_cr = half_width.min(half_height);
cr.at_most(max_cr).at_least(0.0)
}
}
// ----------------------------------------------------------------------------
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum PathType {
Open,
Closed,
}
/// Tessellation quality options
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[cfg_attr(feature = "serde", serde(default))]
pub struct TessellationOptions {
/// Use "feathering" to smooth out the edges of shapes as a form of anti-aliasing.
///
/// Feathering works by making each edge into a thin gradient into transparency.
/// The size of this edge is controlled by [`Self::feathering_size_in_pixels`].
///
/// This makes shapes appear smoother, but requires more triangles and is therefore slower.
///
/// This setting does not affect text.
///
/// Default: `true`.
pub feathering: bool,
/// The size of the feathering, in physical pixels.
///
/// The default, and suggested, value for this is `1.0`.
/// If you use a larger value, edges will appear blurry.
pub feathering_size_in_pixels: f32,
/// If `true` (default) cull certain primitives before tessellating them.
/// This likely makes
pub coarse_tessellation_culling: bool,
/// If `true`, small filled circled will be optimized by using pre-rasterized circled
/// from the font atlas.
pub prerasterized_discs: bool,
/// If `true` (default) align text to the physical pixel grid.
/// This makes the text sharper on most platforms.
pub round_text_to_pixels: bool,
/// If `true` (default), align right-angled line segments to the physical pixel grid.
///
/// This makes the line segments appear crisp on any display.
pub round_line_segments_to_pixels: bool,
/// If `true` (default), align rectangles to the physical pixel grid.
///
/// This makes the rectangle strokes more crisp,
/// and makes filled rectangles tile perfectly (without feathering).
///
/// You can override this with [`crate::RectShape::round_to_pixels`].
pub round_rects_to_pixels: bool,
/// Output the clip rectangles to be painted.
pub debug_paint_clip_rects: bool,
/// Output the text-containing rectangles.
pub debug_paint_text_rects: bool,
/// If true, no clipping will be done.
pub debug_ignore_clip_rects: bool,
/// The maximum distance between the original curve and the flattened curve.
pub bezier_tolerance: f32,
/// The default value will be 1.0e-5, it will be used during float compare.
pub epsilon: f32,
/// If `rayon` feature is activated, should we parallelize tessellation?
pub parallel_tessellation: bool,
/// If `true`, invalid meshes will be silently ignored.
/// If `false`, invalid meshes will cause a panic.
///
/// The default is `false` to save performance.
pub validate_meshes: bool,
}
impl Default for TessellationOptions {
fn default() -> Self {
Self {
feathering: true,
feathering_size_in_pixels: 1.0,
coarse_tessellation_culling: true,
prerasterized_discs: true,
round_text_to_pixels: true,
round_line_segments_to_pixels: true,
round_rects_to_pixels: true,
debug_paint_text_rects: false,
debug_paint_clip_rects: false,
debug_ignore_clip_rects: false,
bezier_tolerance: 0.1,
epsilon: 1.0e-5,
parallel_tessellation: true,
validate_meshes: false,
}
}
}
fn cw_signed_area(path: &[PathPoint]) -> f64 {
if let Some(last) = path.last() {
let mut previous = last.pos;
let mut area = 0.0;
for p in path {
area += (previous.x * p.pos.y - p.pos.x * previous.y) as f64;
previous = p.pos;
}
area
} else {
0.0
}
}
/// Tessellate the given convex area into a polygon.
///
/// Calling this may reverse the vertices in the path if they are wrong winding order.
///
/// The preferred winding order is clockwise.
fn fill_closed_path(feathering: f32, path: &mut [PathPoint], fill_color: Color32, out: &mut Mesh) {
if fill_color == Color32::TRANSPARENT {
return;
}
let n = path.len() as u32;
if n < 3 {
return;
}
if 0.0 < feathering {
if cw_signed_area(path) < 0.0 {
// Wrong winding order - fix:
path.reverse();
for point in &mut *path {
point.normal = -point.normal;
}
}
out.reserve_triangles(3 * n as usize);
out.reserve_vertices(2 * n as usize);
let idx_inner = out.vertices.len() as u32;
let idx_outer = idx_inner + 1;
// The fill:
for i in 2..n {
out.add_triangle(idx_inner + 2 * (i - 1), idx_inner, idx_inner + 2 * i);
}
// The feathering:
let mut i0 = n - 1;
for i1 in 0..n {
let p1 = &path[i1 as usize];
let dm = 0.5 * feathering * p1.normal;
let pos_inner = p1.pos - dm;
let pos_outer = p1.pos + dm;
out.colored_vertex(pos_inner, fill_color);
out.colored_vertex(pos_outer, Color32::TRANSPARENT);
out.add_triangle(idx_inner + i1 * 2, idx_inner + i0 * 2, idx_outer + 2 * i0);
out.add_triangle(idx_outer + i0 * 2, idx_outer + i1 * 2, idx_inner + 2 * i1);
i0 = i1;
}
} else {
out.reserve_triangles(n as usize);
let idx = out.vertices.len() as u32;
out.vertices.extend(path.iter().map(|p| Vertex {
pos: p.pos,
uv: WHITE_UV,
color: fill_color,
}));
for i in 2..n {
out.add_triangle(idx, idx + i - 1, idx + i);
}
}
}
/// Like [`fill_closed_path`] but with texturing.
///
/// The `uv_from_pos` is called for each vertex position.
fn fill_closed_path_with_uv(
feathering: f32,
path: &mut [PathPoint],
color: Color32,
texture_id: TextureId,
uv_from_pos: impl Fn(Pos2) -> Pos2,
out: &mut Mesh,
) {
if color == Color32::TRANSPARENT {
return;
}
if out.is_empty() {
out.texture_id = texture_id;
} else {
assert_eq!(
out.texture_id, texture_id,
"Mixing different `texture_id` in the same "
);
}
let n = path.len() as u32;
if 0.0 < feathering {
if cw_signed_area(path) < 0.0 {
// Wrong winding order - fix:
path.reverse();
for point in &mut *path {
point.normal = -point.normal;
}
}
out.reserve_triangles(3 * n as usize);
out.reserve_vertices(2 * n as usize);
let color_outer = Color32::TRANSPARENT;
let idx_inner = out.vertices.len() as u32;
let idx_outer = idx_inner + 1;
// The fill:
for i in 2..n {
out.add_triangle(idx_inner + 2 * (i - 1), idx_inner, idx_inner + 2 * i);
}
// The feathering:
let mut i0 = n - 1;
for i1 in 0..n {
let p1 = &path[i1 as usize];
let dm = 0.5 * feathering * p1.normal;
let pos = p1.pos - dm;
out.vertices.push(Vertex {
pos,
uv: uv_from_pos(pos),
color,
});
let pos = p1.pos + dm;
out.vertices.push(Vertex {
pos,
uv: uv_from_pos(pos),
color: color_outer,
});
out.add_triangle(idx_inner + i1 * 2, idx_inner + i0 * 2, idx_outer + 2 * i0);
out.add_triangle(idx_outer + i0 * 2, idx_outer + i1 * 2, idx_inner + 2 * i1);
i0 = i1;
}
} else {
out.reserve_triangles(n as usize);
let idx = out.vertices.len() as u32;
out.vertices.extend(path.iter().map(|p| Vertex {
pos: p.pos,
uv: uv_from_pos(p.pos),
color,
}));
for i in 2..n {
out.add_triangle(idx, idx + i - 1, idx + i);
}
}
}
/// Tessellate the given path as a stroke with thickness.
fn stroke_path(
feathering: f32,
path: &mut [PathPoint],
path_type: PathType,
stroke: &PathStroke,
out: &mut Mesh,
) {
let fill = Color32::TRANSPARENT;
stroke_and_fill_path(feathering, path, path_type, stroke, fill, out);
}
/// Tessellate the given path as a stroke with thickness, with optional fill color.
///
/// Calling this may reverse the vertices in the path if they are wrong winding order.
///
/// The preferred winding order is clockwise.
fn stroke_and_fill_path(
feathering: f32,
path: &mut [PathPoint],
path_type: PathType,
stroke: &PathStroke,
color_fill: Color32,
out: &mut Mesh,
) {
let n = path.len() as u32;
if n < 2 {
return;
}
if stroke.width == 0.0 {
// Skip the stroke, just fill.
return fill_closed_path(feathering, path, color_fill, out);
}
if color_fill != Color32::TRANSPARENT && cw_signed_area(path) < 0.0 {
// Wrong winding order - fix:
path.reverse();
for point in &mut *path {
point.normal = -point.normal;
}
}
if stroke.color == ColorMode::TRANSPARENT {
// Skip the stroke, just fill. But subtract the width from the path:
match stroke.kind {
StrokeKind::Inside => {
for point in &mut *path {
point.pos -= stroke.width * point.normal;
}
}
StrokeKind::Middle => {
for point in &mut *path {
point.pos -= 0.5 * stroke.width * point.normal;
}
}
StrokeKind::Outside => {}
}
// Skip the stroke, just fill.
return fill_closed_path(feathering, path, color_fill, out);
}
let idx = out.vertices.len() as u32;
// Move the points so that the stroke is on middle of the path.
match stroke.kind {
StrokeKind::Inside => {
for point in &mut *path {
point.pos -= 0.5 * stroke.width * point.normal;
}
}
StrokeKind::Middle => {
// correct
}
StrokeKind::Outside => {
for point in &mut *path {
point.pos += 0.5 * stroke.width * point.normal;
}
}
}
// Expand the bounding box to include the thickness of the path
let uv_bbox = if matches!(stroke.color, ColorMode::UV(_)) {
Rect::from_points(&path.iter().map(|p| p.pos).collect::<Vec<Pos2>>())
.expand((stroke.width / 2.0) + feathering)
} else {
Rect::NAN
};
let get_color = |col: &ColorMode, pos: Pos2| match col {
ColorMode::Solid(col) => *col,
ColorMode::UV(fun) => fun(uv_bbox, pos),
};
if 0.0 < feathering {
let color_outer = Color32::TRANSPARENT;
let color_middle = &stroke.color;
// We add a bit of an epsilon here, because when we round to pixels,
// we can get rounding errors (unless pixels_per_point is an integer).
// And it's better to err on the side of the nicer rendering with line caps
// (the thin-line optimization has no line caps).
let thin_line = stroke.width <= 0.9 * feathering;
if thin_line {
// If the stroke is painted smaller than the pixel width (=feathering width),
// then we risk severe aliasing.
// Instead, we paint the stroke as a triangular ridge, two feather-widths wide,
// and lessen the opacity of the middle part instead of making it thinner.
if color_fill != Color32::TRANSPARENT && stroke.width < feathering {
// If this is filled shape, then we need to also compensate so that the
// filled area remains the same as it would have been without the
// artificially wide line.
for point in &mut *path {
point.pos += 0.5 * (feathering - stroke.width) * point.normal;
}
}
// TODO(emilk): add line caps (if this is an open line).
let opacity = stroke.width / feathering;
/*
We paint the line using three edges: outer, middle, fill.
. o m i outer, middle, fill
. |---| feathering (pixel width)
*/
out.reserve_triangles(4 * n as usize);
out.reserve_vertices(3 * n as usize);
let mut i0 = n - 1;
for i1 in 0..n {
let connect_with_previous = path_type == PathType::Closed || i1 > 0;
let p1 = path[i1 as usize];
let p = p1.pos;
let n = p1.normal;
out.colored_vertex(p + n * feathering, color_outer);
out.colored_vertex(p, mul_color(get_color(color_middle, p), opacity));
out.colored_vertex(p - n * feathering, color_fill);
if connect_with_previous {
out.add_triangle(idx + 3 * i0 + 0, idx + 3 * i0 + 1, idx + 3 * i1 + 0);
out.add_triangle(idx + 3 * i0 + 1, idx + 3 * i1 + 0, idx + 3 * i1 + 1);
out.add_triangle(idx + 3 * i0 + 1, idx + 3 * i0 + 2, idx + 3 * i1 + 1);
out.add_triangle(idx + 3 * i0 + 2, idx + 3 * i1 + 1, idx + 3 * i1 + 2);
}
i0 = i1;
}
if color_fill != Color32::TRANSPARENT {
out.reserve_triangles(n as usize - 2);
let idx_fill = idx + 2;
for i in 2..n {
out.add_triangle(idx_fill + 3 * (i - 1), idx_fill, idx_fill + 3 * i);
}
}
} else {
// thick anti-aliased line
/*
We paint the line using four edges: outer, middle, middle, fill
. o m p m f outer, middle, point, middle, fill
. |---| feathering (pixel width)
. |--------------| width
. |---------| outer_rad
. |-----| inner_rad
*/
let inner_rad = 0.5 * (stroke.width - feathering);
let outer_rad = 0.5 * (stroke.width + feathering);
match path_type {
PathType::Closed => {
out.reserve_triangles(6 * n as usize);
out.reserve_vertices(4 * n as usize);
let mut i0 = n - 1;
for i1 in 0..n {
let p1 = path[i1 as usize];
let p = p1.pos;
let n = p1.normal;
out.colored_vertex(p + n * outer_rad, color_outer);
out.colored_vertex(
p + n * inner_rad,
get_color(color_middle, p + n * inner_rad),
);
out.colored_vertex(
p - n * inner_rad,
get_color(color_middle, p - n * inner_rad),
);
out.colored_vertex(p - n * outer_rad, color_fill);
out.add_triangle(idx + 4 * i0 + 0, idx + 4 * i0 + 1, idx + 4 * i1 + 0);
out.add_triangle(idx + 4 * i0 + 1, idx + 4 * i1 + 0, idx + 4 * i1 + 1);
out.add_triangle(idx + 4 * i0 + 1, idx + 4 * i0 + 2, idx + 4 * i1 + 1);
out.add_triangle(idx + 4 * i0 + 2, idx + 4 * i1 + 1, idx + 4 * i1 + 2);
out.add_triangle(idx + 4 * i0 + 2, idx + 4 * i0 + 3, idx + 4 * i1 + 2);
out.add_triangle(idx + 4 * i0 + 3, idx + 4 * i1 + 2, idx + 4 * i1 + 3);
i0 = i1;
}
if color_fill != Color32::TRANSPARENT {
out.reserve_triangles(n as usize - 2);
let idx_fill = idx + 3;
for i in 2..n {
out.add_triangle(idx_fill + 4 * (i - 1), idx_fill, idx_fill + 4 * i);
}
}
}
PathType::Open => {
// Anti-alias the ends by extruding the outer edge and adding
// two more triangles to each end:
// | aa | | aa |
// _________________ ___
// | \ added / | feathering
// | \ ___p___ / | ___
// | | | |
// | | opa | |
// | | que | |
// | | | |
// (in the future it would be great with an option to add a circular end instead)
// TODO(emilk): we should probably shrink before adding the line caps,
// so that we don't add to the area of the line.
// TODO(emilk): make line caps optional.
out.reserve_triangles(6 * n as usize + 4);
out.reserve_vertices(4 * n as usize);
{
let end = path[0];
let p = end.pos;
let n = end.normal;
let back_extrude = n.rot90() * feathering;
out.colored_vertex(p + n * outer_rad + back_extrude, color_outer);
out.colored_vertex(
p + n * inner_rad,
get_color(color_middle, p + n * inner_rad),
);
out.colored_vertex(
p - n * inner_rad,
get_color(color_middle, p - n * inner_rad),
);
out.colored_vertex(p - n * outer_rad + back_extrude, color_outer);
out.add_triangle(idx + 0, idx + 1, idx + 2);
out.add_triangle(idx + 0, idx + 2, idx + 3);
}
let mut i0 = 0;
for i1 in 1..n - 1 {
let point = path[i1 as usize];
let p = point.pos;
let n = point.normal;
out.colored_vertex(p + n * outer_rad, color_outer);
out.colored_vertex(
p + n * inner_rad,
get_color(color_middle, p + n * inner_rad),
);
out.colored_vertex(
p - n * inner_rad,
get_color(color_middle, p - n * inner_rad),
);
out.colored_vertex(p - n * outer_rad, color_outer);
out.add_triangle(idx + 4 * i0 + 0, idx + 4 * i0 + 1, idx + 4 * i1 + 0);
out.add_triangle(idx + 4 * i0 + 1, idx + 4 * i1 + 0, idx + 4 * i1 + 1);
out.add_triangle(idx + 4 * i0 + 1, idx + 4 * i0 + 2, idx + 4 * i1 + 1);
out.add_triangle(idx + 4 * i0 + 2, idx + 4 * i1 + 1, idx + 4 * i1 + 2);
out.add_triangle(idx + 4 * i0 + 2, idx + 4 * i0 + 3, idx + 4 * i1 + 2);
out.add_triangle(idx + 4 * i0 + 3, idx + 4 * i1 + 2, idx + 4 * i1 + 3);
i0 = i1;
}
{
let i1 = n - 1;
let end = path[i1 as usize];
let p = end.pos;
let n = end.normal;
let back_extrude = -n.rot90() * feathering;
out.colored_vertex(p + n * outer_rad + back_extrude, color_outer);
out.colored_vertex(
p + n * inner_rad,
get_color(color_middle, p + n * inner_rad),
);
out.colored_vertex(
p - n * inner_rad,
get_color(color_middle, p - n * inner_rad),
);
out.colored_vertex(p - n * outer_rad + back_extrude, color_outer);
out.add_triangle(idx + 4 * i0 + 0, idx + 4 * i0 + 1, idx + 4 * i1 + 0);
out.add_triangle(idx + 4 * i0 + 1, idx + 4 * i1 + 0, idx + 4 * i1 + 1);
out.add_triangle(idx + 4 * i0 + 1, idx + 4 * i0 + 2, idx + 4 * i1 + 1);
out.add_triangle(idx + 4 * i0 + 2, idx + 4 * i1 + 1, idx + 4 * i1 + 2);
out.add_triangle(idx + 4 * i0 + 2, idx + 4 * i0 + 3, idx + 4 * i1 + 2);
out.add_triangle(idx + 4 * i0 + 3, idx + 4 * i1 + 2, idx + 4 * i1 + 3);
// The extension:
out.add_triangle(idx + 4 * i1 + 0, idx + 4 * i1 + 1, idx + 4 * i1 + 2);
out.add_triangle(idx + 4 * i1 + 0, idx + 4 * i1 + 2, idx + 4 * i1 + 3);
}
}
}
}
} else {
// not anti-aliased:
out.reserve_triangles(2 * n as usize);
out.reserve_vertices(2 * n as usize);
let last_index = if path_type == PathType::Closed {
n
} else {
n - 1
};
for i in 0..last_index {
out.add_triangle(
idx + (2 * i + 0) % (2 * n),
idx + (2 * i + 1) % (2 * n),
idx + (2 * i + 2) % (2 * n),
);
out.add_triangle(
idx + (2 * i + 2) % (2 * n),
idx + (2 * i + 1) % (2 * n),
idx + (2 * i + 3) % (2 * n),
);
}
let thin_line = stroke.width <= feathering;
if thin_line {
// Fade out thin lines rather than making them thinner
let opacity = stroke.width / feathering;
let radius = feathering / 2.0;
for p in path.iter_mut() {
out.colored_vertex(
p.pos + radius * p.normal,
mul_color(get_color(&stroke.color, p.pos + radius * p.normal), opacity),
);
out.colored_vertex(
p.pos - radius * p.normal,
mul_color(get_color(&stroke.color, p.pos - radius * p.normal), opacity),
);
}
} else {
let radius = stroke.width / 2.0;
for p in path.iter_mut() {
out.colored_vertex(
p.pos + radius * p.normal,
get_color(&stroke.color, p.pos + radius * p.normal),
);
out.colored_vertex(
p.pos - radius * p.normal,
get_color(&stroke.color, p.pos - radius * p.normal),
);
}
}
if color_fill != Color32::TRANSPARENT {
// We Need to create new vertices, because the ones we used for the stroke
// has the wrong color.
// Shrink to ignore the stroke…
for point in &mut *path {
point.pos -= 0.5 * stroke.width * point.normal;
}
// …then fill:
fill_closed_path(feathering, path, color_fill, out);
}
}
}
fn mul_color(color: Color32, factor: f32) -> Color32 {
// The fast gamma-space multiply also happens to be perceptually better.
// Win-win!
color.gamma_multiply(factor)
}
// ----------------------------------------------------------------------------
/// Converts [`Shape`]s into triangles ([`Mesh`]).
///
/// For performance reasons it is smart to reuse the same [`Tessellator`].
///
/// See also [`tessellate_shapes`], a convenient wrapper around [`Tessellator`].
#[derive(Clone)]
pub struct Tessellator {
pixels_per_point: f32,
options: TessellationOptions,
font_tex_size: [usize; 2],
/// See [`crate::TextureAtlas::prepared_discs`].
prepared_discs: Vec<PreparedDisc>,
/// size of feathering in points. normally the size of a physical pixel. 0.0 if disabled
feathering: f32,
/// Only used for culling
clip_rect: Rect,
scratchpad_points: Vec<Pos2>,
scratchpad_path: Path,
}
impl Tessellator {
/// Create a new [`Tessellator`].
///
/// * `pixels_per_point`: number of physical pixels to each logical point
/// * `options`: tessellation quality
/// * `shapes`: what to tessellate
/// * `font_tex_size`: size of the font texture. Required to normalize glyph uv rectangles when tessellating text.
/// * `prepared_discs`: What [`crate::TextureAtlas::prepared_discs`] returns. Can safely be set to an empty vec.
pub fn new(
pixels_per_point: f32,
options: TessellationOptions,
font_tex_size: [usize; 2],
prepared_discs: Vec<PreparedDisc>,
) -> Self {
let feathering = if options.feathering {
let pixel_size = 1.0 / pixels_per_point;
options.feathering_size_in_pixels * pixel_size
} else {
0.0
};
Self {
pixels_per_point,
options,
font_tex_size,
prepared_discs,
feathering,
clip_rect: Rect::EVERYTHING,
scratchpad_points: Default::default(),
scratchpad_path: Default::default(),
}
}
/// Set the [`Rect`] to use for culling.
pub fn set_clip_rect(&mut self, clip_rect: Rect) {
self.clip_rect = clip_rect;
}
/// Tessellate a clipped shape into a list of primitives.
pub fn tessellate_clipped_shape(
&mut self,
clipped_shape: ClippedShape,
out_primitives: &mut Vec<ClippedPrimitive>,
) {
let ClippedShape { clip_rect, shape } = clipped_shape;
if !clip_rect.is_positive() {
return; // skip empty clip rectangles
}
if let Shape::Vec(shapes) = shape {
for shape in shapes {
self.tessellate_clipped_shape(ClippedShape { clip_rect, shape }, out_primitives);
}
return;
}
if let Shape::Callback(callback) = shape {
out_primitives.push(ClippedPrimitive {
clip_rect,
primitive: Primitive::Callback(callback),
});
return;
}
let start_new_mesh = match out_primitives.last() {
None => true,
Some(output_clipped_primitive) => {
output_clipped_primitive.clip_rect != clip_rect
|| match &output_clipped_primitive.primitive {
Primitive::Mesh(output_mesh) => {
output_mesh.texture_id != shape.texture_id()
}
Primitive::Callback(_) => true,
}
}
};
if start_new_mesh {
out_primitives.push(ClippedPrimitive {
clip_rect,
primitive: Primitive::Mesh(Mesh::default()),
});
}
let out = out_primitives.last_mut().unwrap();
if let Primitive::Mesh(out_mesh) = &mut out.primitive {
self.clip_rect = clip_rect;
self.tessellate_shape(shape, out_mesh);
} else {
unreachable!();
}
}
/// Tessellate a single [`Shape`] into a [`Mesh`].
///
/// This call can panic the given shape is of [`Shape::Vec`] or [`Shape::Callback`].
/// For that, use [`Self::tessellate_clipped_shape`] instead.
/// * `shape`: the shape to tessellate.
/// * `out`: triangles are appended to this.
pub fn tessellate_shape(&mut self, shape: Shape, out: &mut Mesh) {
match shape {
Shape::Noop => {}
Shape::Vec(vec) => {
for shape in vec {
self.tessellate_shape(shape, out);
}
}
Shape::Circle(circle) => {
self.tessellate_circle(circle, out);
}
Shape::Ellipse(ellipse) => {
self.tessellate_ellipse(ellipse, out);
}
Shape::Mesh(mesh) => {
profiling::scope!("mesh");
if self.options.validate_meshes && !mesh.is_valid() {
debug_assert!(false, "Invalid Mesh in Shape::Mesh");
return;
}
// note: `append` still checks if the mesh is valid if extra asserts are enabled.
if self.options.coarse_tessellation_culling
&& !self.clip_rect.intersects(mesh.calc_bounds())
{
return;
}
out.append_ref(&mesh);
}
Shape::LineSegment { points, stroke } => {
self.tessellate_line_segment(points, stroke, out);
}
Shape::Path(path_shape) => {
self.tessellate_path(&path_shape, out);
}
Shape::Rect(rect_shape) => {
self.tessellate_rect(&rect_shape, out);
}
Shape::Text(text_shape) => {
if self.options.debug_paint_text_rects {
let rect = text_shape.galley.rect.translate(text_shape.pos.to_vec2());
self.tessellate_rect(
&RectShape::stroke(rect, 2.0, (0.5, Color32::GREEN), StrokeKind::Outside),
out,
);
}
self.tessellate_text(&text_shape, out);
}
Shape::QuadraticBezier(quadratic_shape) => {
self.tessellate_quadratic_bezier(&quadratic_shape, out);
}
Shape::CubicBezier(cubic_shape) => self.tessellate_cubic_bezier(&cubic_shape, out),
Shape::Callback(_) => {
panic!("Shape::Callback passed to Tessellator");
}
}
}
/// Tessellate a single [`CircleShape`] into a [`Mesh`].
///
/// * `shape`: the circle to tessellate.
/// * `out`: triangles are appended to this.
pub fn tessellate_circle(&mut self, shape: CircleShape, out: &mut Mesh) {
let CircleShape {
center,
radius,
mut fill,
stroke,
} = shape;
if radius <= 0.0 {
return;
}
if self.options.coarse_tessellation_culling
&& !self
.clip_rect
.expand(radius + stroke.width)
.contains(center)
{
return;
}
if self.options.prerasterized_discs && fill != Color32::TRANSPARENT {
let radius_px = radius * self.pixels_per_point;
// strike the right balance between some circles becoming too blurry, and some too sharp.
let cutoff_radius = radius_px * 2.0_f32.powf(0.25);
// Find the right disc radius for a crisp edge:
// TODO(emilk): perhaps we can do something faster than this linear search.
for disc in &self.prepared_discs {
if cutoff_radius <= disc.r {
let side = radius_px * disc.w / (self.pixels_per_point * disc.r);
let rect = Rect::from_center_size(center, Vec2::splat(side));
out.add_rect_with_uv(rect, disc.uv, fill);
if stroke.is_empty() {
return; // we are done
} else {
// we still need to do the stroke
fill = Color32::TRANSPARENT; // don't fill again below
break;
}
}
}
}
let path_stroke = PathStroke::from(stroke).outside();
self.scratchpad_path.clear();
self.scratchpad_path.add_circle(center, radius);
self.scratchpad_path
.fill_and_stroke(self.feathering, fill, &path_stroke, out);
}
/// Tessellate a single [`EllipseShape`] into a [`Mesh`].
///
/// * `shape`: the ellipse to tessellate.
/// * `out`: triangles are appended to this.
pub fn tessellate_ellipse(&mut self, shape: EllipseShape, out: &mut Mesh) {
let EllipseShape {
center,
radius,
fill,
stroke,
} = shape;
if radius.x <= 0.0 || radius.y <= 0.0 {
return;
}
if self.options.coarse_tessellation_culling
&& !self
.clip_rect
.expand2(radius + Vec2::splat(stroke.width))
.contains(center)
{
return;
}
// Get the max pixel radius
let max_radius = (radius.max_elem() * self.pixels_per_point) as u32;
// Ensure there is at least 8 points in each quarter of the ellipse
let num_points = u32::max(8, max_radius / 16);
// Create an ease ratio based the ellipses a and b
let ratio = ((radius.y / radius.x) / 2.0).clamp(0.0, 1.0);
// Generate points between the 0 to pi/2
let quarter: Vec<Vec2> = (1..num_points)
.map(|i| {
let percent = i as f32 / num_points as f32;
// Ease the percent value, concentrating points around tight bends
let eased = 2.0 * (percent - percent.powf(2.0)) * ratio + percent.powf(2.0);
// Scale the ease to the quarter
let t = eased * std::f32::consts::FRAC_PI_2;
Vec2::new(radius.x * f32::cos(t), radius.y * f32::sin(t))
})
.collect();
// Build the ellipse from the 4 known vertices filling arcs between
// them by mirroring the points between 0 and pi/2
let mut points = Vec::new();
points.push(center + Vec2::new(radius.x, 0.0));
points.extend(quarter.iter().map(|p| center + *p));
points.push(center + Vec2::new(0.0, radius.y));
points.extend(quarter.iter().rev().map(|p| center + Vec2::new(-p.x, p.y)));
points.push(center + Vec2::new(-radius.x, 0.0));
points.extend(quarter.iter().map(|p| center - *p));
points.push(center + Vec2::new(0.0, -radius.y));
points.extend(quarter.iter().rev().map(|p| center + Vec2::new(p.x, -p.y)));
let path_stroke = PathStroke::from(stroke).outside();
self.scratchpad_path.clear();
self.scratchpad_path.add_line_loop(&points);
self.scratchpad_path
.fill_and_stroke(self.feathering, fill, &path_stroke, out);
}
/// Tessellate a single [`Mesh`] into a [`Mesh`].
///
/// * `mesh`: the mesh to tessellate.
/// * `out`: triangles are appended to this.
pub fn tessellate_mesh(&self, mesh: &Mesh, out: &mut Mesh) {
if !mesh.is_valid() {
debug_assert!(false, "Invalid Mesh in Shape::Mesh");
return;
}
if self.options.coarse_tessellation_culling
&& !self.clip_rect.intersects(mesh.calc_bounds())
{
return;
}
out.append_ref(mesh);
}
/// Tessellate a line segment between the two points with the given stroke into a [`Mesh`].
///
/// * `shape`: the mesh to tessellate.
/// * `out`: triangles are appended to this.
pub fn tessellate_line_segment(
&mut self,
mut points: [Pos2; 2],
stroke: impl Into<Stroke>,
out: &mut Mesh,
) {
let stroke = stroke.into();
if stroke.is_empty() {
return;
}
if self.options.coarse_tessellation_culling
&& !self
.clip_rect
.intersects(Rect::from_two_pos(points[0], points[1]).expand(stroke.width))
{
return;
}
if self.options.round_line_segments_to_pixels {
let feathering = self.feathering;
let pixels_per_point = self.pixels_per_point;
let quarter_pixel = 0.25 * feathering; // Used to avoid fence post problem.
let [a, b] = &mut points;
if a.x == b.x {
// Vertical line
let mut x = a.x;
round_line_segment(&mut x, &stroke, self.pixels_per_point);
a.x = x;
b.x = x;
// Often the ends of the line are exactly on a pixel boundary,
// but we extend line segments with a cap that is a pixel wide…
// Solution: first shrink the line segment (on each end),
// then round to pixel center!
// We shrink by half-a-pixel n total (a quarter on each end),
// so that on average we avoid the fence-post-problem after rounding.
if a.y < b.y {
a.y = (a.y + quarter_pixel).round_to_pixel_center(pixels_per_point);
b.y = (b.y - quarter_pixel).round_to_pixel_center(pixels_per_point);
} else {
a.y = (a.y - quarter_pixel).round_to_pixel_center(pixels_per_point);
b.y = (b.y + quarter_pixel).round_to_pixel_center(pixels_per_point);
}
}
if a.y == b.y {
// Horizontal line
let mut y = a.y;
round_line_segment(&mut y, &stroke, self.pixels_per_point);
a.y = y;
b.y = y;
// See earlier comment for vertical lines
if a.x < b.x {
a.x = (a.x + quarter_pixel).round_to_pixel_center(pixels_per_point);
b.x = (b.x - quarter_pixel).round_to_pixel_center(pixels_per_point);
} else {
a.x = (a.x - quarter_pixel).round_to_pixel_center(pixels_per_point);
b.x = (b.x + quarter_pixel).round_to_pixel_center(pixels_per_point);
}
}
}
self.scratchpad_path.clear();
self.scratchpad_path.add_line_segment(points);
self.scratchpad_path
.stroke_open(self.feathering, &stroke.into(), out);
}
#[deprecated = "Use `tessellate_line_segment` instead"]
pub fn tessellate_line(
&mut self,
points: [Pos2; 2],
stroke: impl Into<Stroke>,
out: &mut Mesh,
) {
self.tessellate_line_segment(points, stroke, out);
}
/// Tessellate a single [`PathShape`] into a [`Mesh`].
///
/// * `path_shape`: the path to tessellate.
/// * `out`: triangles are appended to this.
pub fn tessellate_path(&mut self, path_shape: &PathShape, out: &mut Mesh) {
if path_shape.points.len() < 2 {
return;
}
if self.options.coarse_tessellation_culling
&& !path_shape.visual_bounding_rect().intersects(self.clip_rect)
{
return;
}
profiling::function_scope!();
let PathShape {
points,
closed,
fill,
stroke,
} = path_shape;
self.scratchpad_path.clear();
if *closed {
self.scratchpad_path.add_line_loop(points);
self.scratchpad_path
.fill_and_stroke(self.feathering, *fill, stroke, out);
} else {
debug_assert_eq!(
*fill,
Color32::TRANSPARENT,
"You asked to fill a path that is not closed. That makes no sense."
);
self.scratchpad_path.add_open_points(points);
self.scratchpad_path
.stroke(self.feathering, PathType::Open, stroke, out);
}
}
/// Tessellate a single [`Rect`] into a [`Mesh`].
///
/// * `rect`: the rectangle to tessellate.
/// * `out`: triangles are appended to this.
pub fn tessellate_rect(&mut self, rect_shape: &RectShape, out: &mut Mesh) {
if self.options.coarse_tessellation_culling
&& !rect_shape.visual_bounding_rect().intersects(self.clip_rect)
{
return;
}
let brush = rect_shape.brush.as_ref();
let RectShape {
mut rect,
corner_radius,
mut fill,
mut stroke,
mut stroke_kind,
round_to_pixels,
mut blur_width,
brush: _, // brush is extracted on its own, because it is not Copy
} = *rect_shape;
let mut corner_radius = CornerRadiusF32::from(corner_radius);
let round_to_pixels = round_to_pixels.unwrap_or(self.options.round_rects_to_pixels);
let pixel_size = 1.0 / self.pixels_per_point;
if stroke.width == 0.0 {
stroke.color = Color32::TRANSPARENT;
}
// It is common to (sometimes accidentally) create an infinitely sized rectangle.
// Make sure we can handle that:
rect.min = rect.min.at_least(pos2(-1e7, -1e7));
rect.max = rect.max.at_most(pos2(1e7, 1e7));
if !stroke.is_empty() {
// Check if the stroke covers the whole rectangle
let rect_with_stroke = match stroke_kind {
StrokeKind::Inside => rect,
StrokeKind::Middle => rect.expand(stroke.width / 2.0),
StrokeKind::Outside => rect.expand(stroke.width),
};
if rect_with_stroke.size().min_elem() <= 2.0 * stroke.width + 0.5 * self.feathering {
// The stroke covers the fill.
// Change this to be a fill-only shape, using the stroke color as the new fill color.
rect = rect_with_stroke;
// We blend so that if the stroke is semi-transparent,
// the fill still shines through.
fill = stroke.color;
stroke = Stroke::NONE;
}
}
if stroke.is_empty() {
// Approximate thin rectangles with line segments.
// This is important so that thin rectangles look good.
if rect.width() <= 2.0 * self.feathering {
return self.tessellate_line_segment(
[rect.center_top(), rect.center_bottom()],
(rect.width(), fill),
out,
);
}
if rect.height() <= 2.0 * self.feathering {
return self.tessellate_line_segment(
[rect.left_center(), rect.right_center()],
(rect.height(), fill),
out,
);
}
}
// Important: round to pixels BEFORE modifying/applying stroke_kind
if round_to_pixels {
// The rounding is aware of the stroke kind.
// It is designed to be clever in trying to divine the intentions of the user.
match stroke_kind {
StrokeKind::Inside => {
// The stroke is inside the rect, so the rect defines the _outside_ of the stroke.
// We round the outside of the stroke on a pixel boundary.
// This will make the outside of the stroke crisp.
//
// Will make each stroke asymmetric if not an even multiple of physical pixels,
// but the left stroke will always be the mirror image of the right stroke,
// and the top stroke will always be the mirror image of the bottom stroke.
//
// This is so that a user can tile rectangles with `StrokeKind::Inside`,
// and get no pixel overlap between them.
rect = rect.round_to_pixels(self.pixels_per_point);
}
StrokeKind::Middle => {
// On this path we optimize for crisp and symmetric strokes.
// We put odd-width strokes in the center of pixels.
// To understand why, see `fn round_line_segment`.
if stroke.width <= 0.0 {
rect = rect.round_to_pixels(self.pixels_per_point);
} else if stroke.width <= pixel_size
|| is_nearest_integer_odd(self.pixels_per_point * stroke.width)
{
rect = rect.round_to_pixel_center(self.pixels_per_point);
} else {
rect = rect.round_to_pixels(self.pixels_per_point);
}
}
StrokeKind::Outside => {
// Put the inside of the stroke on a pixel boundary.
// Makes the inside of the stroke and the filled rect crisp,
// but the outside of the stroke may become feathered (blurry).
//
// Will make each stroke asymmetric if not an even multiple of physical pixels,
// but the left stroke will always be the mirror image of the right stroke,
// and the top stroke will always be the mirror image of the bottom stroke.
rect = rect.round_to_pixels(self.pixels_per_point);
}
}
}
let old_feathering = self.feathering;
if self.feathering < blur_width {
// We accomplish the blur by using a larger-than-normal feathering.
// Feathering is usually used to make the edges of a shape softer for anti-aliasing.
// The tessellator can't handle blurring/feathering larger than the smallest side of the rect.
let eps = 0.1; // avoid numerical problems
blur_width = blur_width
.at_most(rect.size().min_elem() - eps - 2.0 * stroke.width)
.at_least(0.0);
corner_radius += 0.5 * blur_width;
self.feathering = self.feathering.max(blur_width);
}
{
// Modify `rect` so that it represents the OUTER border
// We do this because `path::rounded_rectangle` uses the
// corner radius to pick the fidelity/resolution of the corner.
let original_cr = corner_radius;
match stroke_kind {
StrokeKind::Inside => {}
StrokeKind::Middle => {
rect = rect.expand(stroke.width / 2.0);
corner_radius += stroke.width / 2.0;
}
StrokeKind::Outside => {
rect = rect.expand(stroke.width);
corner_radius += stroke.width;
}
}
stroke_kind = StrokeKind::Inside;
// A small corner_radius is incompatible with a wide stroke,
// because the small bend will be extruded inwards and cross itself.
// There are two ways to solve this (wile maintaining constant stroke width):
// either we increase the corner_radius, or we set it to zero.
// We choose the former: if the user asks for _any_ corner_radius, they should get it.
let min_inside_cr = 0.1; // Large enough to avoid numerical issues
let min_outside_cr = stroke.width + min_inside_cr;
let extra_cr_tweak = 0.4; // Otherwise is doesn't _feels_ enough.
if original_cr.nw == 0.0 {
corner_radius.nw = 0.0;
} else {
corner_radius.nw += extra_cr_tweak;
corner_radius.nw = corner_radius.nw.at_least(min_outside_cr);
}
if original_cr.ne == 0.0 {
corner_radius.ne = 0.0;
} else {
corner_radius.ne += extra_cr_tweak;
corner_radius.ne = corner_radius.ne.at_least(min_outside_cr);
}
if original_cr.sw == 0.0 {
corner_radius.sw = 0.0;
} else {
corner_radius.sw += extra_cr_tweak;
corner_radius.sw = corner_radius.sw.at_least(min_outside_cr);
}
if original_cr.se == 0.0 {
corner_radius.se = 0.0;
} else {
corner_radius.se += extra_cr_tweak;
corner_radius.se = corner_radius.se.at_least(min_outside_cr);
}
}
let path = &mut self.scratchpad_path;
path.clear();
path::rounded_rectangle(&mut self.scratchpad_points, rect, corner_radius);
path.add_line_loop(&self.scratchpad_points);
let path_stroke = PathStroke::from(stroke).with_kind(stroke_kind);
if let Some(brush) = brush {
// Textured fill
let fill_rect = match stroke_kind {
StrokeKind::Inside => rect.shrink(stroke.width),
StrokeKind::Middle => rect.shrink(stroke.width / 2.0),
StrokeKind::Outside => rect,
};
if fill_rect.is_positive() {
let crate::Brush {
fill_texture_id,
uv,
} = **brush;
let uv_from_pos = |p: Pos2| {
pos2(
remap(p.x, rect.x_range(), uv.x_range()),
remap(p.y, rect.y_range(), uv.y_range()),
)
};
path.fill_with_uv(self.feathering, fill, fill_texture_id, uv_from_pos, out);
}
if !stroke.is_empty() {
path.stroke_closed(self.feathering, &path_stroke, out);
}
} else {
// Stroke and maybe fill
path.fill_and_stroke(self.feathering, fill, &path_stroke, out);
}
self.feathering = old_feathering; // restore
}
/// Tessellate a single [`TextShape`] into a [`Mesh`].
/// * `text_shape`: the text to tessellate.
/// * `out`: triangles are appended to this.
pub fn tessellate_text(&mut self, text_shape: &TextShape, out: &mut Mesh) {
let TextShape {
pos: galley_pos,
galley,
underline,
override_text_color,
fallback_color,
opacity_factor,
angle,
} = text_shape;
if galley.is_empty() {
return;
}
if *opacity_factor <= 0.0 {
return;
}
if galley.pixels_per_point != self.pixels_per_point {
let warn = "epaint: WARNING: pixels_per_point (dpi scale) have changed between text layout and tessellation. \
You must recreate your text shapes if pixels_per_point changes.";
#[cfg(feature = "log")]
log::warn!("{warn}");
#[cfg(not(feature = "log"))]
println!("{warn}");
}
out.vertices.reserve(galley.num_vertices);
out.indices.reserve(galley.num_indices);
// The contents of the galley are already snapped to pixel coordinates,
// but we need to make sure the galley ends up on the start of a physical pixel:
let galley_pos = if self.options.round_text_to_pixels {
galley_pos.round_to_pixels(self.pixels_per_point)
} else {
*galley_pos
};
let uv_normalizer = vec2(
1.0 / self.font_tex_size[0] as f32,
1.0 / self.font_tex_size[1] as f32,
);
let rotator = Rot2::from_angle(*angle);
for row in &galley.rows {
if row.visuals.mesh.is_empty() {
continue;
}
let mut row_rect = row.visuals.mesh_bounds;
if *angle != 0.0 {
row_rect = row_rect.rotate_bb(rotator);
}
row_rect = row_rect.translate(galley_pos.to_vec2());
if self.options.coarse_tessellation_culling && !self.clip_rect.intersects(row_rect) {
// culling individual lines of text is important, since a single `Shape::Text`
// can span hundreds of lines.
continue;
}
let index_offset = out.vertices.len() as u32;
out.indices.extend(
row.visuals
.mesh
.indices
.iter()
.map(|index| index + index_offset),
);
out.vertices.extend(
row.visuals
.mesh
.vertices
.iter()
.enumerate()
.map(|(i, vertex)| {
let Vertex { pos, uv, mut color } = *vertex;
if let Some(override_text_color) = override_text_color {
// Only override the glyph color (not background color, strike-through color, etc)
if row.visuals.glyph_vertex_range.contains(&i) {
color = *override_text_color;
}
} else if color == Color32::PLACEHOLDER {
color = *fallback_color;
}
if *opacity_factor < 1.0 {
color = color.gamma_multiply(*opacity_factor);
}
debug_assert!(color != Color32::PLACEHOLDER, "A placeholder color made it to the tessellator. You forgot to set a fallback color.");
let offset = if *angle == 0.0 {
pos.to_vec2()
} else {
rotator * pos.to_vec2()
};
Vertex {
pos: galley_pos + offset,
uv: (uv.to_vec2() * uv_normalizer).to_pos2(),
color,
}
}),
);
if *underline != Stroke::NONE {
self.tessellate_line_segment(
[row_rect.left_bottom(), row_rect.right_bottom()],
*underline,
out,
);
}
}
}
/// Tessellate a single [`QuadraticBezierShape`] into a [`Mesh`].
///
/// * `quadratic_shape`: the shape to tessellate.
/// * `out`: triangles are appended to this.
pub fn tessellate_quadratic_bezier(
&mut self,
quadratic_shape: &QuadraticBezierShape,
out: &mut Mesh,
) {
let options = &self.options;
let clip_rect = self.clip_rect;
if options.coarse_tessellation_culling
&& !quadratic_shape.visual_bounding_rect().intersects(clip_rect)
{
return;
}
let points = quadratic_shape.flatten(Some(options.bezier_tolerance));
self.tessellate_bezier_complete(
&points,
quadratic_shape.fill,
quadratic_shape.closed,
&quadratic_shape.stroke,
out,
);
}
/// Tessellate a single [`CubicBezierShape`] into a [`Mesh`].
///
/// * `cubic_shape`: the shape to tessellate.
/// * `out`: triangles are appended to this.
pub fn tessellate_cubic_bezier(&mut self, cubic_shape: &CubicBezierShape, out: &mut Mesh) {
let options = &self.options;
let clip_rect = self.clip_rect;
if options.coarse_tessellation_culling
&& !cubic_shape.visual_bounding_rect().intersects(clip_rect)
{
return;
}
let points_vec =
cubic_shape.flatten_closed(Some(options.bezier_tolerance), Some(options.epsilon));
for points in points_vec {
self.tessellate_bezier_complete(
&points,
cubic_shape.fill,
cubic_shape.closed,
&cubic_shape.stroke,
out,
);
}
}
fn tessellate_bezier_complete(
&mut self,
points: &[Pos2],
fill: Color32,
closed: bool,
stroke: &PathStroke,
out: &mut Mesh,
) {
if points.len() < 2 {
return;
}
self.scratchpad_path.clear();
if closed {
self.scratchpad_path.add_line_loop(points);
self.scratchpad_path
.fill_and_stroke(self.feathering, fill, stroke, out);
} else {
debug_assert_eq!(
fill,
Color32::TRANSPARENT,
"You asked to fill a bezier path that is not closed. That makes no sense."
);
self.scratchpad_path.add_open_points(points);
self.scratchpad_path
.stroke(self.feathering, PathType::Open, stroke, out);
}
}
}
fn round_line_segment(coord: &mut f32, stroke: &Stroke, pixels_per_point: f32) {
// If the stroke is an odd number of pixels wide,
// we want to round the center of it to the center of a pixel.
//
// If however it is an even number of pixels wide,
// we want to round the center to be between two pixels.
//
// We also want to treat strokes that are _almost_ odd as it it was odd,
// to make it symmetric. Same for strokes that are _almost_ even.
//
// For strokes less than a pixel wide we also round to the center,
// because it will rendered as a single row of pixels by the tessellator.
let pixel_size = 1.0 / pixels_per_point;
if stroke.width <= pixel_size || is_nearest_integer_odd(pixels_per_point * stroke.width) {
*coord = coord.round_to_pixel_center(pixels_per_point);
} else {
*coord = coord.round_to_pixels(pixels_per_point);
}
}
fn is_nearest_integer_odd(width: f32) -> bool {
(width * 0.5 + 0.25).fract() > 0.5
}
#[test]
fn test_is_nearest_integer_odd() {
assert!(is_nearest_integer_odd(0.6));
assert!(is_nearest_integer_odd(1.0));
assert!(is_nearest_integer_odd(1.4));
assert!(!is_nearest_integer_odd(1.6));
assert!(!is_nearest_integer_odd(2.0));
assert!(!is_nearest_integer_odd(2.4));
assert!(is_nearest_integer_odd(2.6));
assert!(is_nearest_integer_odd(3.0));
assert!(is_nearest_integer_odd(3.4));
}
#[deprecated = "Use `Tessellator::new(…).tessellate_shapes(…)` instead"]
pub fn tessellate_shapes(
pixels_per_point: f32,
options: TessellationOptions,
font_tex_size: [usize; 2],
prepared_discs: Vec<PreparedDisc>,
shapes: Vec<ClippedShape>,
) -> Vec<ClippedPrimitive> {
Tessellator::new(pixels_per_point, options, font_tex_size, prepared_discs)
.tessellate_shapes(shapes)
}
impl Tessellator {
/// Turns [`Shape`]:s into sets of triangles.
///
/// The given shapes will tessellated in the same order as they are given.
/// They will be batched together by clip rectangle.
///
/// * `pixels_per_point`: number of physical pixels to each logical point
/// * `options`: tessellation quality
/// * `shapes`: what to tessellate
/// * `font_tex_size`: size of the font texture. Required to normalize glyph uv rectangles when tessellating text.
/// * `prepared_discs`: What [`crate::TextureAtlas::prepared_discs`] returns. Can safely be set to an empty vec.
///
/// The implementation uses a [`Tessellator`].
///
/// ## Returns
/// A list of clip rectangles with matching [`Mesh`].
#[allow(unused_mut)]
pub fn tessellate_shapes(&mut self, mut shapes: Vec<ClippedShape>) -> Vec<ClippedPrimitive> {
profiling::function_scope!();
#[cfg(feature = "rayon")]
if self.options.parallel_tessellation {
self.parallel_tessellation_of_large_shapes(&mut shapes);
}
let mut clipped_primitives: Vec<ClippedPrimitive> = Vec::default();
{
profiling::scope!("tessellate");
for clipped_shape in shapes {
self.tessellate_clipped_shape(clipped_shape, &mut clipped_primitives);
}
}
if self.options.debug_paint_clip_rects {
clipped_primitives = self.add_clip_rects(clipped_primitives);
}
if self.options.debug_ignore_clip_rects {
for clipped_primitive in &mut clipped_primitives {
clipped_primitive.clip_rect = Rect::EVERYTHING;
}
}
clipped_primitives.retain(|p| {
p.clip_rect.is_positive()
&& match &p.primitive {
Primitive::Mesh(mesh) => !mesh.is_empty(),
Primitive::Callback(_) => true,
}
});
for clipped_primitive in &clipped_primitives {
if let Primitive::Mesh(mesh) = &clipped_primitive.primitive {
debug_assert!(mesh.is_valid(), "Tessellator generated invalid Mesh");
}
}
clipped_primitives
}
/// Find large shapes and throw them on the rayon thread pool,
/// then replace the original shape with their tessellated meshes.
#[cfg(feature = "rayon")]
fn parallel_tessellation_of_large_shapes(&self, shapes: &mut [ClippedShape]) {
profiling::function_scope!();
use rayon::prelude::*;
// We only parallelize large/slow stuff, because each tessellation job
// will allocate a new Mesh, and so it creates a lot of extra memory fragmentation
// and allocations that is only worth it for large shapes.
fn should_parallelize(shape: &Shape) -> bool {
match shape {
Shape::Vec(shapes) => 4 < shapes.len() || shapes.iter().any(should_parallelize),
Shape::Path(path_shape) => 32 < path_shape.points.len(),
Shape::QuadraticBezier(_) | Shape::CubicBezier(_) | Shape::Ellipse(_) => true,
Shape::Noop
| Shape::Text(_)
| Shape::Circle(_)
| Shape::Mesh(_)
| Shape::LineSegment { .. }
| Shape::Rect(_)
| Shape::Callback(_) => false,
}
}
let tessellated: Vec<(usize, Mesh)> = shapes
.par_iter()
.enumerate()
.filter(|(_, clipped_shape)| should_parallelize(&clipped_shape.shape))
.map(|(index, clipped_shape)| {
profiling::scope!("tessellate_big_shape");
// TODO(emilk): reuse tessellator in a thread local
let mut tessellator = (*self).clone();
let mut mesh = Mesh::default();
tessellator.tessellate_shape(clipped_shape.shape.clone(), &mut mesh);
(index, mesh)
})
.collect();
profiling::scope!("distribute results", tessellated.len().to_string());
for (index, mesh) in tessellated {
shapes[index].shape = Shape::Mesh(mesh.into());
}
}
fn add_clip_rects(
&mut self,
clipped_primitives: Vec<ClippedPrimitive>,
) -> Vec<ClippedPrimitive> {
self.clip_rect = Rect::EVERYTHING;
let stroke = Stroke::new(2.0, Color32::from_rgb(150, 255, 150));
clipped_primitives
.into_iter()
.flat_map(|clipped_primitive| {
let mut clip_rect_mesh = Mesh::default();
self.tessellate_shape(
Shape::rect_stroke(
clipped_primitive.clip_rect,
0.0,
stroke,
StrokeKind::Outside,
),
&mut clip_rect_mesh,
);
[
clipped_primitive,
ClippedPrimitive {
clip_rect: Rect::EVERYTHING, // whatever
primitive: Primitive::Mesh(clip_rect_mesh),
},
]
})
.collect()
}
}
#[test]
fn test_tessellator() {
use crate::*;
let mut shapes = Vec::with_capacity(2);
let rect = Rect::from_min_max(pos2(0.0, 0.0), pos2(1.0, 1.0));
let uv = Rect::from_min_max(pos2(0.0, 0.0), pos2(1.0, 1.0));
let mut mesh = Mesh::with_texture(TextureId::Managed(1));
mesh.add_rect_with_uv(rect, uv, Color32::WHITE);
shapes.push(Shape::mesh(mesh));
let mut mesh = Mesh::with_texture(TextureId::Managed(2));
mesh.add_rect_with_uv(rect, uv, Color32::WHITE);
shapes.push(Shape::mesh(mesh));
let shape = Shape::Vec(shapes);
let clipped_shapes = vec![ClippedShape {
clip_rect: rect,
shape,
}];
let font_tex_size = [1024, 1024]; // unused
let prepared_discs = vec![]; // unused
let primitives = Tessellator::new(1.0, Default::default(), font_tex_size, prepared_discs)
.tessellate_shapes(clipped_shapes);
assert_eq!(primitives.len(), 2);
}
#[test]
fn path_bounding_box() {
use crate::*;
for i in 1..=100 {
let width = i as f32;
let rect = Rect::from_min_max(pos2(0.0, 0.0), pos2(10.0, 10.0));
let expected_rect = rect.expand((width / 2.0) + 1.5);
let mut mesh = Mesh::default();
let mut path = Path::default();
path.add_open_points(&[
pos2(0.0, 0.0),
pos2(2.0, 0.0),
pos2(5.0, 5.0),
pos2(0.0, 5.0),
pos2(0.0, 7.0),
pos2(10.0, 10.0),
]);
path.stroke(
1.5,
PathType::Closed,
&PathStroke::new_uv(width, move |r, p| {
assert_eq!(r, expected_rect);
// see https://github.com/emilk/egui/pull/4353#discussion_r1573879940 for why .contains() isn't used here.
// TL;DR rounding errors.
assert!(
r.distance_to_pos(p) <= 0.55,
"passed rect {r:?} didn't contain point {p:?} (distance: {})",
r.distance_to_pos(p)
);
assert!(
expected_rect.distance_to_pos(p) <= 0.55,
"expected rect {expected_rect:?} didn't contain point {p:?}"
);
Color32::WHITE
}),
&mut mesh,
);
}
}