epaint/
textures.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
use crate::{ImageData, ImageDelta, TextureId};

// ----------------------------------------------------------------------------

/// Low-level manager for allocating textures.
///
/// Communicates with the painting subsystem using [`Self::take_delta`].
#[derive(Default)]
pub struct TextureManager {
    /// We allocate texture id:s linearly.
    next_id: u64,

    /// Information about currently allocated textures.
    metas: ahash::HashMap<TextureId, TextureMeta>,

    delta: TexturesDelta,
}

impl TextureManager {
    /// Allocate a new texture.
    ///
    /// The given name can be useful for later debugging.
    ///
    /// The returned [`TextureId`] will be [`TextureId::Managed`], with an index
    /// starting from zero and increasing with each call to [`Self::alloc`].
    ///
    /// The first texture you allocate will be `TextureId::Managed(0) == TextureId::default()` and
    /// MUST have a white pixel at (0,0) ([`crate::WHITE_UV`]).
    ///
    /// The texture is given a retain-count of `1`, requiring one call to [`Self::free`] to free it.
    pub fn alloc(&mut self, name: String, image: ImageData, options: TextureOptions) -> TextureId {
        let id = TextureId::Managed(self.next_id);
        self.next_id += 1;

        self.metas.entry(id).or_insert_with(|| TextureMeta {
            name,
            size: image.size(),
            bytes_per_pixel: image.bytes_per_pixel(),
            retain_count: 1,
            options,
        });

        self.delta.set.push((id, ImageDelta::full(image, options)));
        id
    }

    /// Assign a new image to an existing texture,
    /// or update a region of it.
    pub fn set(&mut self, id: TextureId, delta: ImageDelta) {
        if let Some(meta) = self.metas.get_mut(&id) {
            if let Some(pos) = delta.pos {
                debug_assert!(
                    pos[0] + delta.image.width() <= meta.size[0]
                        && pos[1] + delta.image.height() <= meta.size[1],
                    "Partial texture update is outside the bounds of texture {id:?}",
                );
            } else {
                // whole update
                meta.size = delta.image.size();
                meta.bytes_per_pixel = delta.image.bytes_per_pixel();
                // since we update the whole image, we can discard all old enqueued deltas
                self.delta.set.retain(|(x, _)| x != &id);
            }
            self.delta.set.push((id, delta));
        } else {
            debug_assert!(false, "Tried setting texture {id:?} which is not allocated");
        }
    }

    /// Free an existing texture.
    pub fn free(&mut self, id: TextureId) {
        if let std::collections::hash_map::Entry::Occupied(mut entry) = self.metas.entry(id) {
            let meta = entry.get_mut();
            meta.retain_count -= 1;
            if meta.retain_count == 0 {
                entry.remove();
                self.delta.free.push(id);
            }
        } else {
            debug_assert!(false, "Tried freeing texture {id:?} which is not allocated");
        }
    }

    /// Increase the retain-count of the given texture.
    ///
    /// For each time you call [`Self::retain`] you must call [`Self::free`] on additional time.
    pub fn retain(&mut self, id: TextureId) {
        if let Some(meta) = self.metas.get_mut(&id) {
            meta.retain_count += 1;
        } else {
            debug_assert!(
                false,
                "Tried retaining texture {id:?} which is not allocated",
            );
        }
    }

    /// Take and reset changes since last frame.
    ///
    /// These should be applied to the painting subsystem each frame.
    pub fn take_delta(&mut self) -> TexturesDelta {
        std::mem::take(&mut self.delta)
    }

    /// Get meta-data about a specific texture.
    pub fn meta(&self, id: TextureId) -> Option<&TextureMeta> {
        self.metas.get(&id)
    }

    /// Get meta-data about all allocated textures in some arbitrary order.
    pub fn allocated(&self) -> impl ExactSizeIterator<Item = (&TextureId, &TextureMeta)> {
        self.metas.iter()
    }

    /// Total number of allocated textures.
    pub fn num_allocated(&self) -> usize {
        self.metas.len()
    }
}

/// Meta-data about an allocated texture.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct TextureMeta {
    /// A human-readable name useful for debugging.
    pub name: String,

    /// width x height
    pub size: [usize; 2],

    /// 4 or 1
    pub bytes_per_pixel: usize,

    /// Free when this reaches zero.
    pub retain_count: usize,

    /// The texture filtering mode to use when rendering.
    pub options: TextureOptions,
}

impl TextureMeta {
    /// Size in bytes.
    /// width x height x [`Self::bytes_per_pixel`].
    pub fn bytes_used(&self) -> usize {
        self.size[0] * self.size[1] * self.bytes_per_pixel
    }
}

// ----------------------------------------------------------------------------

/// How the texture texels are filtered.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct TextureOptions {
    /// How to filter when magnifying (when texels are larger than pixels).
    pub magnification: TextureFilter,

    /// How to filter when minifying (when texels are smaller than pixels).
    pub minification: TextureFilter,

    /// How to wrap the texture when the texture coordinates are outside the [0, 1] range.
    pub wrap_mode: TextureWrapMode,

    /// How to filter between texture mipmaps.
    ///
    /// Mipmaps ensures textures look smooth even when the texture is very small and pixels are much
    /// larger than individual texels.
    ///
    /// # Notes
    ///
    /// - This may not be available on all backends (currently only `egui_glow`).
    pub mipmap_mode: Option<TextureFilter>,
}

impl TextureOptions {
    /// Linear magnification and minification.
    pub const LINEAR: Self = Self {
        magnification: TextureFilter::Linear,
        minification: TextureFilter::Linear,
        wrap_mode: TextureWrapMode::ClampToEdge,
        mipmap_mode: None,
    };

    /// Nearest magnification and minification.
    pub const NEAREST: Self = Self {
        magnification: TextureFilter::Nearest,
        minification: TextureFilter::Nearest,
        wrap_mode: TextureWrapMode::ClampToEdge,
        mipmap_mode: None,
    };

    /// Linear magnification and minification, but with the texture repeated.
    pub const LINEAR_REPEAT: Self = Self {
        magnification: TextureFilter::Linear,
        minification: TextureFilter::Linear,
        wrap_mode: TextureWrapMode::Repeat,
        mipmap_mode: None,
    };

    /// Linear magnification and minification, but with the texture mirrored and repeated.
    pub const LINEAR_MIRRORED_REPEAT: Self = Self {
        magnification: TextureFilter::Linear,
        minification: TextureFilter::Linear,
        wrap_mode: TextureWrapMode::MirroredRepeat,
        mipmap_mode: None,
    };

    /// Nearest magnification and minification, but with the texture repeated.
    pub const NEAREST_REPEAT: Self = Self {
        magnification: TextureFilter::Nearest,
        minification: TextureFilter::Nearest,
        wrap_mode: TextureWrapMode::Repeat,
        mipmap_mode: None,
    };

    /// Nearest magnification and minification, but with the texture mirrored and repeated.
    pub const NEAREST_MIRRORED_REPEAT: Self = Self {
        magnification: TextureFilter::Nearest,
        minification: TextureFilter::Nearest,
        wrap_mode: TextureWrapMode::MirroredRepeat,
        mipmap_mode: None,
    };

    pub const fn with_mipmap_mode(self, mipmap_mode: Option<TextureFilter>) -> Self {
        Self {
            mipmap_mode,
            ..self
        }
    }
}

impl Default for TextureOptions {
    /// The default is linear for both magnification and minification.
    fn default() -> Self {
        Self::LINEAR
    }
}

/// How the texture texels are filtered.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub enum TextureFilter {
    /// Show the nearest pixel value.
    ///
    /// When zooming in you will get sharp, square pixels/texels.
    /// When zooming out you will get a very crisp (and aliased) look.
    Nearest,

    /// Linearly interpolate the nearest neighbors, creating a smoother look when zooming in and out.
    Linear,
}

/// Defines how textures are wrapped around objects when texture coordinates fall outside the [0, 1] range.
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub enum TextureWrapMode {
    /// Stretches the edge pixels to fill beyond the texture's bounds.
    ///
    /// This is what you want to use for a normal image in a GUI.
    #[default]
    ClampToEdge,

    /// Tiles the texture across the surface, repeating it horizontally and vertically.
    Repeat,

    /// Mirrors the texture with each repetition, creating symmetrical tiling.
    MirroredRepeat,
}

// ----------------------------------------------------------------------------

/// What has been allocated and freed during the last period.
///
/// These are commands given to the integration painter.
#[derive(Clone, Default, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[must_use = "The painter must take care of this"]
pub struct TexturesDelta {
    /// New or changed textures. Apply before painting.
    pub set: Vec<(TextureId, ImageDelta)>,

    /// Textures to free after painting.
    pub free: Vec<TextureId>,
}

impl TexturesDelta {
    pub fn is_empty(&self) -> bool {
        self.set.is_empty() && self.free.is_empty()
    }

    pub fn append(&mut self, mut newer: Self) {
        self.set.extend(newer.set);
        self.free.append(&mut newer.free);
    }

    pub fn clear(&mut self) {
        self.set.clear();
        self.free.clear();
    }
}

impl std::fmt::Debug for TexturesDelta {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        use std::fmt::Write as _;

        let mut debug_struct = f.debug_struct("TexturesDelta");
        if !self.set.is_empty() {
            let mut string = String::new();
            for (tex_id, delta) in &self.set {
                let size = delta.image.size();
                if let Some(pos) = delta.pos {
                    write!(
                        string,
                        "{:?} partial ([{} {}] - [{} {}]), ",
                        tex_id,
                        pos[0],
                        pos[1],
                        pos[0] + size[0],
                        pos[1] + size[1]
                    )
                    .ok();
                } else {
                    write!(string, "{:?} full {}x{}, ", tex_id, size[0], size[1]).ok();
                }
            }
            debug_struct.field("set", &string);
        }
        if !self.free.is_empty() {
            debug_struct.field("free", &self.free);
        }
        debug_struct.finish()
    }
}