1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
//! Methods for expanding structs
use crate::{
    contract::{types, Context},
    util,
};
use ethers_core::{
    abi::{
        struct_def::{FieldDeclaration, FieldType, StructFieldType, StructType},
        Component, HumanReadableParser, ParamType, RawAbi, SolStruct,
    },
    macros::ethers_contract_crate,
};
use eyre::{eyre, Result};
use inflector::Inflector;
use proc_macro2::TokenStream;
use quote::quote;
use std::collections::{HashMap, VecDeque};

impl Context {
    /// Generate corresponding types for structs parsed from a human readable ABI
    ///
    /// NOTE: This assumes that all structs that are potentially used as type for variable are
    /// in fact present in the `AbiParser`, this is sound because `AbiParser::parse` would have
    /// failed already
    pub fn abi_structs(&self) -> Result<TokenStream> {
        if self.human_readable {
            self.gen_human_readable_structs()
        } else {
            self.gen_internal_structs()
        }
    }

    /// In the event of type conflicts this allows for removing a specific struct type.
    pub fn remove_struct(&mut self, name: &str) {
        if self.human_readable {
            self.abi_parser.structs.remove(name);
        } else {
            self.internal_structs.structs.remove(name);
        }
    }

    /// Returns the type definition for the struct with the given name
    pub fn struct_definition(&mut self, name: &str) -> Result<TokenStream> {
        if self.human_readable {
            self.generate_human_readable_struct(name)
        } else {
            self.generate_internal_struct(name)
        }
    }

    /// Generates the type definition for the name that matches the given identifier
    fn generate_internal_struct(&self, id: &str) -> Result<TokenStream> {
        let sol_struct =
            self.internal_structs.structs.get(id).ok_or_else(|| eyre!("struct not found"))?;
        let struct_name = self
            .internal_structs
            .rust_type_names
            .get(id)
            .ok_or_else(|| eyre!("No types found for {}", id))?;
        let tuple = self
            .internal_structs
            .struct_tuples
            .get(id)
            .ok_or_else(|| eyre!("No types found for {}", id))?
            .clone();
        self.expand_internal_struct(struct_name, sol_struct, tuple)
    }

    /// Returns the `TokenStream` with all the internal structs extracted form the JSON ABI
    fn gen_internal_structs(&self) -> Result<TokenStream> {
        let mut structs = TokenStream::new();
        let mut ids: Vec<_> = self.internal_structs.structs.keys().collect();
        ids.sort();

        for id in ids {
            structs.extend(self.generate_internal_struct(id)?);
        }
        Ok(structs)
    }

    /// Expand all structs parsed from the internal types of the JSON ABI
    fn expand_internal_struct(
        &self,
        name: &str,
        sol_struct: &SolStruct,
        tuple: ParamType,
    ) -> Result<TokenStream> {
        let mut fields = Vec::with_capacity(sol_struct.fields().len());

        // determines whether we have enough info to create named fields
        let is_tuple = sol_struct.has_nameless_field();

        for field in sol_struct.fields() {
            let ty = match field.r#type() {
                FieldType::Elementary(ty) => types::expand(ty)?,
                FieldType::Struct(struct_ty) => expand_struct_type(struct_ty),
                FieldType::Mapping(_) => {
                    eyre::bail!("Mapping types in struct `{}` are not supported {:?}", name, field)
                }
            };

            if is_tuple {
                fields.push(ty);
            } else {
                let field_name = util::safe_ident(&field.name().to_snake_case());
                fields.push(quote! { pub #field_name: #ty });
            }
        }

        let name = util::ident(name);

        let struct_def = if is_tuple {
            quote! {
                pub struct #name(
                    #( #fields ),*
                );
            }
        } else {
            quote! {
                pub struct #name {
                    #( #fields ),*
                }
            }
        };

        let sig = if let ParamType::Tuple(ref tokens) = tuple {
            tokens.iter().map(|kind| kind.to_string()).collect::<Vec<_>>().join(",")
        } else {
            "".to_string()
        };

        let abi_signature = format!("{name}({sig})",);

        let abi_signature_doc = util::expand_doc(&format!("`{abi_signature}`"));

        // use the same derives as for events
        let derives = util::expand_derives(&self.event_derives);

        let ethers_contract = ethers_contract_crate();
        Ok(quote! {
            #abi_signature_doc
            #[derive(Clone, Debug, Default, Eq, PartialEq, #ethers_contract::EthAbiType, #ethers_contract::EthAbiCodec, #derives)]
            #struct_def
        })
    }

    fn generate_human_readable_struct(&self, name: &str) -> Result<TokenStream> {
        let sol_struct =
            self.abi_parser.structs.get(name).ok_or_else(|| eyre!("struct not found"))?;
        let mut fields = Vec::with_capacity(sol_struct.fields().len());
        let mut param_types = Vec::with_capacity(sol_struct.fields().len());
        for field in sol_struct.fields() {
            let field_name = util::safe_ident(&field.name().to_snake_case());
            match field.r#type() {
                FieldType::Elementary(ty) => {
                    param_types.push(ty.clone());
                    let ty = types::expand(ty)?;
                    fields.push(quote! { pub #field_name: #ty });
                }
                FieldType::Struct(struct_ty) => {
                    let ty = expand_struct_type(struct_ty);
                    fields.push(quote! { pub #field_name: #ty });

                    let name = struct_ty.name();
                    let tuple = self
                        .abi_parser
                        .struct_tuples
                        .get(name)
                        .ok_or_else(|| eyre!("No types found for {}", name))?
                        .clone();
                    let tuple = ParamType::Tuple(tuple);

                    param_types.push(struct_ty.as_param(tuple));
                }
                FieldType::Mapping(_) => {
                    eyre::bail!("Mapping types in struct `{}` are not supported {:?}", name, field)
                }
            }
        }

        let abi_signature = format!(
            "{}({})",
            name,
            param_types.iter().map(|kind| kind.to_string()).collect::<Vec<_>>().join(","),
        );

        let abi_signature_doc = util::expand_doc(&format!("`{abi_signature}`"));

        let name = util::ident(name);

        // use the same derives as for events
        let derives = &self.event_derives;
        let derives = quote! {#(#derives),*};

        let ethers_contract = ethers_contract_crate();

        Ok(quote! {
            #abi_signature_doc
            #[derive(Clone, Debug, Default, Eq, PartialEq, #ethers_contract::EthAbiType, #ethers_contract::EthAbiCodec, #derives)]
            pub struct #name {
                #( #fields ),*
            }
        })
    }

    /// Expand all structs parsed from the human readable ABI
    fn gen_human_readable_structs(&self) -> Result<TokenStream> {
        let mut structs = TokenStream::new();
        let mut names: Vec<_> = self.abi_parser.structs.keys().collect();
        names.sort();
        for name in names {
            structs.extend(self.generate_human_readable_struct(name)?);
        }
        Ok(structs)
    }
}

/// Helper to match `ethabi::Param`s with structs and nested structs
///
/// This is currently used to get access to all the unique solidity structs used as function
/// in/output until `ethabi` supports it as well.
#[derive(Debug, Clone, Default)]
pub struct InternalStructs {
    /// (function name, param name) -> struct which are the identifying properties we get the name
    /// from ethabi.
    pub(crate) function_params: HashMap<(String, String), String>,

    /// (function name) -> `Vec<structs>` all structs the function returns
    pub(crate) outputs: HashMap<String, Vec<String>>,

    /// (event name, idx) -> struct which are the identifying properties we get the name
    /// from ethabi.
    ///
    /// Note: we need to map the index of the event here because events can contain nameless inputs
    pub(crate) event_params: HashMap<(String, usize), String>,

    /// All the structs extracted from the abi with their identifier as key
    pub(crate) structs: HashMap<String, SolStruct>,

    /// solidity structs as tuples
    pub(crate) struct_tuples: HashMap<String, ParamType>,

    /// Contains the names for the rust types (id -> rust type name)
    pub(crate) rust_type_names: HashMap<String, String>,
}

impl InternalStructs {
    /// Creates a new instance with a filled type mapping table based on the abi
    pub fn new(abi: RawAbi) -> Self {
        let mut top_level_internal_types = HashMap::new();
        let mut function_params = HashMap::new();
        let mut outputs = HashMap::new();
        let mut event_params = HashMap::new();
        let mut structs = HashMap::new();
        for item in abi
            .into_iter()
            .filter(|item| matches!(item.type_field.as_str(), "constructor" | "function" | "event"))
        {
            let is_event = item.type_field == "event";

            if let Some(name) = item.name {
                for (idx, input) in item.inputs.into_iter().enumerate() {
                    if let Some(ty) = input
                        .internal_type
                        .as_deref()
                        .filter(|ty| ty.starts_with("struct "))
                        .map(struct_type_identifier)
                    {
                        if is_event {
                            event_params.insert((name.clone(), idx), ty.to_string());
                        } else {
                            function_params
                                .insert((name.clone(), input.name.clone()), ty.to_string());
                        }
                        top_level_internal_types.insert(ty.to_string(), input);
                    }
                }

                if is_event {
                    // no outputs in an event
                    continue
                }

                let mut output_structs = Vec::new();
                for output in item.outputs {
                    if let Some(ty) = output
                        .internal_type
                        .as_deref()
                        .filter(|ty| ty.starts_with("struct "))
                        .map(struct_type_identifier)
                    {
                        output_structs.push(ty.to_string());
                        top_level_internal_types.insert(ty.to_string(), output);
                    }
                }
                outputs.insert(name, output_structs);
            }
        }

        // turn each top level internal type (function input/output) and their nested types
        // into a struct will create all structs
        for component in top_level_internal_types.values() {
            insert_structs(&mut structs, component);
        }

        // determine the `ParamType` representation of each struct
        let struct_tuples = resolve_struct_tuples(&structs);

        // name -> (id, projections)
        let mut type_names: HashMap<String, (String, Vec<String>)> =
            HashMap::with_capacity(structs.len());
        for id in structs.keys() {
            let name = struct_type_name(id).to_pascal_case();
            let projections = struct_type_projections(id);
            insert_rust_type_name(&mut type_names, name, projections, id.clone());
        }

        Self {
            function_params,
            outputs,
            structs,
            event_params,
            struct_tuples,
            rust_type_names: type_names
                .into_iter()
                .map(|(rust_name, (id, _))| (id, rust_name))
                .collect(),
        }
    }

    /// Returns the name of the rust type that will be generated if the given input is a struct
    /// NOTE: this does not account for arrays or fixed arrays
    pub fn get_function_input_struct_type(&self, function: &str, input: &str) -> Option<&str> {
        let key = (function.to_string(), input.to_string());
        self.function_params
            .get(&key)
            .and_then(|id| self.rust_type_names.get(id))
            .map(String::as_str)
    }

    /// Returns the name of the rust type that will be generated if the given input is a struct
    /// This takes the index of event's parameter instead of the parameter's name like
    /// [`Self::get_function_input_struct_type`] does because we can't rely on the name since events
    /// support nameless parameters NOTE: this does not account for arrays or fixed arrays
    pub fn get_event_input_struct_type(&self, event: &str, idx: usize) -> Option<&str> {
        let key = (event.to_string(), idx);
        self.event_params.get(&key).and_then(|id| self.rust_type_names.get(id)).map(String::as_str)
    }

    /// Returns the name of the rust type that will be generated if the given output is a struct
    /// NOTE: this does not account for arrays or fixed arrays
    pub fn get_function_output_struct_type(
        &self,
        function: &str,
        internal_type: &str,
    ) -> Option<&str> {
        self.outputs
            .get(function)
            .and_then(|outputs| {
                outputs.iter().find(|s| s.as_str() == struct_type_identifier(internal_type))
            })
            .and_then(|id| self.rust_type_names.get(id))
            .map(String::as_str)
    }

    /// Returns the name of the rust type for the type
    pub fn get_struct_type(&self, internal_type: &str) -> Option<&str> {
        self.rust_type_names.get(struct_type_identifier(internal_type)).map(String::as_str)
    }

    /// Returns the mapping table of abi `internal type identifier -> rust type`
    pub fn rust_type_names(&self) -> &HashMap<String, String> {
        &self.rust_type_names
    }

    /// Returns all the solidity struct types
    pub fn structs_types(&self) -> &HashMap<String, SolStruct> {
        &self.structs
    }
}

/// This will determine the name of the rust type and will make sure that possible collisions are
/// resolved by adjusting the actual Rust name of the structure, e.g. `LibraryA.Point` and
/// `LibraryB.Point` to `LibraryAPoint` and `LibraryBPoint`.
fn insert_rust_type_name(
    type_names: &mut HashMap<String, (String, Vec<String>)>,
    mut name: String,
    mut projections: Vec<String>,
    id: String,
) {
    if let Some((other_id, mut other_projections)) = type_names.remove(&name) {
        let mut other_name = name.clone();
        // name collision `A.name` `B.name`, rename to `AName`, `BName`
        if !other_projections.is_empty() {
            other_name = format!("{}{other_name}", other_projections.remove(0).to_pascal_case());
        }
        insert_rust_type_name(type_names, other_name, other_projections, other_id);

        if !projections.is_empty() {
            name = format!("{}{name}", projections.remove(0).to_pascal_case());
        }
        insert_rust_type_name(type_names, name, projections, id);
    } else {
        type_names.insert(name, (id, projections));
    }
}

/// Tries to determine the `ParamType::Tuple` for every struct.
///
/// If a structure has nested structures, these must be determined first, essentially starting with
/// structures consisting of only elementary types before moving on to higher level structures, for
/// example `Proof {point: Point}, Point {x:int, y:int}` start by converting Point into a tuple of
/// `x` and `y` and then substituting `point` with this within `Proof`.
fn resolve_struct_tuples(all_structs: &HashMap<String, SolStruct>) -> HashMap<String, ParamType> {
    let mut params = HashMap::new();
    let mut structs: VecDeque<_> = all_structs.iter().collect();

    // keep track of how often we retried nested structs
    let mut sequential_retries = 0;
    'outer: while let Some((id, ty)) = structs.pop_front() {
        if sequential_retries > structs.len() {
            break
        }
        if let Some(tuple) = ty.as_tuple() {
            params.insert(id.to_string(), tuple);
        } else {
            // try to substitute all nested struct types with their `ParamTypes`
            let mut struct_params = Vec::with_capacity(ty.fields.len());
            for field in ty.fields() {
                match field.ty {
                    FieldType::Elementary(ref param) => {
                        struct_params.push(param.clone());
                    }
                    FieldType::Struct(ref field_ty) => {
                        // nested struct
                        let ty_id = field_ty.identifier();
                        if let Some(nested) = params.get(&ty_id).cloned() {
                            match field_ty {
                                StructFieldType::Type(_) => struct_params.push(nested),
                                StructFieldType::Array(_) => {
                                    struct_params.push(ParamType::Array(Box::new(nested)));
                                }
                                StructFieldType::FixedArray(_, size) => {
                                    struct_params
                                        .push(ParamType::FixedArray(Box::new(nested), *size));
                                }
                            }
                        } else {
                            // struct field needs to be resolved first
                            structs.push_back((id, ty));
                            sequential_retries += 1;
                            continue 'outer
                        }
                    }
                    _ => {
                        unreachable!("mapping types are unsupported")
                    }
                }
            }
            params.insert(id.to_string(), ParamType::Tuple(struct_params));
        }

        // we resolved a new param, so we can try all again
        sequential_retries = 0;
    }
    params
}

/// turns the tuple component into a struct if it's still missing in the map, including all inner
/// structs
fn insert_structs(structs: &mut HashMap<String, SolStruct>, tuple: &Component) {
    if let Some(internal_ty) = tuple.internal_type.as_ref() {
        let ident = struct_type_identifier(internal_ty);
        if structs.contains_key(ident) {
            return
        }
        if let Some(fields) = tuple
            .components
            .iter()
            .map(|f| {
                HumanReadableParser::parse_type(&f.type_field)
                    .ok()
                    .and_then(|kind| field(structs, f, kind))
            })
            .collect::<Option<Vec<_>>>()
        {
            let s = SolStruct { name: ident.to_string(), fields };
            structs.insert(ident.to_string(), s);
        }
    }
}

/// Determines the type of the field component
fn field(
    structs: &mut HashMap<String, SolStruct>,
    field_component: &Component,
    kind: ParamType,
) -> Option<FieldDeclaration> {
    match kind {
        ParamType::Array(ty) => {
            let FieldDeclaration { ty, .. } = field(structs, field_component, *ty)?;
            match ty {
                FieldType::Elementary(kind) => {
                    // this arm represents all the elementary types like address, uint...
                    Some(FieldDeclaration::new(
                        field_component.name.clone(),
                        FieldType::Elementary(ParamType::Array(Box::new(kind))),
                    ))
                }
                FieldType::Struct(ty) => Some(FieldDeclaration::new(
                    field_component.name.clone(),
                    FieldType::Struct(StructFieldType::Array(Box::new(ty))),
                )),
                _ => {
                    unreachable!("no mappings types support as function inputs or outputs")
                }
            }
        }
        ParamType::FixedArray(ty, size) => {
            let FieldDeclaration { ty, .. } = field(structs, field_component, *ty)?;
            match ty {
                FieldType::Elementary(kind) => {
                    // this arm represents all the elementary types like address, uint...
                    Some(FieldDeclaration::new(
                        field_component.name.clone(),
                        FieldType::Elementary(ParamType::FixedArray(Box::new(kind), size)),
                    ))
                }
                FieldType::Struct(ty) => Some(FieldDeclaration::new(
                    field_component.name.clone(),
                    FieldType::Struct(StructFieldType::FixedArray(Box::new(ty), size)),
                )),
                _ => {
                    unreachable!("no mappings types support as function inputs or outputs")
                }
            }
        }
        ParamType::Tuple(_) => {
            insert_structs(structs, field_component);
            let internal_type = field_component.internal_type.as_ref()?;
            let ty = struct_type_identifier(internal_type);
            // split the identifier into the name and all projections:
            // `A.B.C.name` -> name, [A,B,C]
            let mut idents = ty.rsplit('.');
            let name = idents.next().unwrap().to_string();
            let projections = idents.rev().map(str::to_string).collect();
            Some(FieldDeclaration::new(
                field_component.name.clone(),
                FieldType::Struct(StructFieldType::Type(StructType::new(name, projections))),
            ))
        }
        elementary => Some(FieldDeclaration::new(
            field_component.name.clone(),
            FieldType::Elementary(elementary),
        )),
    }
}

/// `struct Pairing.G2Point[]` -> `G2Point`
fn struct_type_name(name: &str) -> &str {
    struct_type_identifier(name).rsplit('.').next().unwrap()
}

/// `Pairing.G2Point` -> `Pairing.G2Point`
fn struct_type_identifier(name: &str) -> &str {
    name.trim_start_matches("struct ").split('[').next().unwrap()
}

/// `struct Pairing.Nested.G2Point[]` -> `[Pairing, Nested]`
fn struct_type_projections(name: &str) -> Vec<String> {
    let id = struct_type_identifier(name);
    let mut iter = id.rsplit('.');
    iter.next();
    iter.rev().map(str::to_string).collect()
}

/// Expands to the rust struct type
fn expand_struct_type(struct_ty: &StructFieldType) -> TokenStream {
    match struct_ty {
        StructFieldType::Type(ty) => {
            let ty = util::ident(ty.name());
            quote! {#ty}
        }
        StructFieldType::Array(ty) => {
            let ty = expand_struct_type(ty);
            quote! {::std::vec::Vec<#ty>}
        }
        StructFieldType::FixedArray(ty, size) => {
            let ty = expand_struct_type(ty);
            quote! { [#ty; #size]}
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    #[test]
    fn can_determine_structs() {
        const VERIFIER_ABI: &str =
            include_str!("../../../tests/solidity-contracts/verifier_abi.json");
        let abi = serde_json::from_str::<RawAbi>(VERIFIER_ABI).unwrap();

        let internal = InternalStructs::new(abi);
        dbg!(internal.rust_type_names);
    }
}