1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
use crate::{
base::{encode_function_data, AbiError, BaseContract},
call::FunctionCall,
event::Event,
event_core::EthEvent,
};
use ethers_core::{
abi::{Abi, Detokenize, Error, EventExt, Function, Tokenize},
types::{Address, Filter, Selector, ValueOrArray},
};
use ethers_providers::Middleware;
use std::{borrow::Borrow, fmt::Debug, marker::PhantomData, sync::Arc};
#[cfg(not(feature = "legacy"))]
use ethers_core::types::Eip1559TransactionRequest;
#[cfg(feature = "legacy")]
use ethers_core::types::TransactionRequest;
/// `Contract` is a [`ContractInstance`] object with an `Arc` middleware.
/// This type alias exists to preserve backwards compatibility with
/// less-abstract Contracts.
///
/// For full usage docs, see [`ContractInstance`].
pub type Contract<M> = ContractInstance<std::sync::Arc<M>, M>;
/// A Contract is an abstraction of an executable program on the Ethereum Blockchain.
/// It has code (called byte code) as well as allocated long-term memory
/// (called storage). Every deployed Contract has an address, which is used to connect
/// to it so that it may be sent messages to call its methods.
///
/// A Contract can emit Events, which can be efficiently observed by applications
/// to be notified when a contract has performed specific operation.
///
/// There are two types of methods that can be called on a Contract:
///
/// 1. A Constant method may not add, remove or change any data in the storage,
/// nor log any events, and may only call Constant methods on other contracts.
/// These methods are free (no Ether is required) to call. The result from them
/// may also be returned to the caller. Constant methods are marked as `pure` and
/// `view` in Solidity.
///
/// 2. A Non-Constant method requires a fee (in Ether) to be paid, but may perform
/// any state-changing operation desired, log events, send ether and call Non-Constant
/// methods on other Contracts. These methods cannot return their result to the caller.
/// These methods must be triggered by a transaction, sent by an Externally Owned Account
/// (EOA) either directly or indirectly (i.e. called from another contract), and are
/// required to be mined before the effects are present. Therefore, the duration
/// required for these operations can vary widely, and depend on the transaction
/// gas price, network congestion and miner priority heuristics.
///
/// The Contract API provides simple way to connect to a Contract and call its methods,
/// as functions on a Rust struct, handling all the binary protocol conversion,
/// internal name mangling and topic construction. This allows a Contract object
/// to be used like any standard Rust struct, without having to worry about the
/// low-level details of the Ethereum Virtual Machine or Blockchain.
///
/// The Contract definition (called an Application Binary Interface, or ABI) must
/// be provided to instantiate a contract and the available methods and events will
/// be made available to call by providing their name as a `str` via the [`method`]
/// and [`event`] methods. If non-existing names are given, the function/event call
/// will fail.
///
/// Alternatively, you can _and should_ use the [`abigen`] macro, or the [`Abigen` builder]
/// to generate type-safe bindings to your contracts.
///
/// # Example
///
/// Assuming we already have our contract deployed at `address`, we'll proceed to
/// interact with its methods and retrieve raw logs it has emitted.
///
/// ```no_run
/// use ethers_core::{
/// abi::Abi,
/// types::{Address, H256},
/// };
/// use ethers_contract::Contract;
/// use ethers_providers::{Provider, Http};
/// use std::{convert::TryFrom, sync::Arc};
///
/// # async fn foo() -> Result<(), Box<dyn std::error::Error>> {
/// // this is a fake address used just for this example
/// let address = "eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee".parse::<Address>()?;
///
/// // (ugly way to write the ABI inline, you can otherwise read it from a file)
/// let abi: Abi = serde_json::from_str(r#"[{"inputs":[{"internalType":"string","name":"value","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"author","type":"address"},{"indexed":true,"internalType":"address","name":"oldAuthor","type":"address"},{"indexed":false,"internalType":"string","name":"oldValue","type":"string"},{"indexed":false,"internalType":"string","name":"newValue","type":"string"}],"name":"ValueChanged","type":"event"},{"inputs":[],"name":"getValue","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastSender","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"value","type":"string"}],"name":"setValue","outputs":[],"stateMutability":"nonpayable","type":"function"}]"#)?;
///
/// // connect to the network
/// let client = Provider::<Http>::try_from("http://localhost:8545").unwrap();
///
/// // create the contract object at the address
/// let contract = Contract::new(address, abi, Arc::new(client));
///
/// // Calling constant methods is done by calling `call()` on the method builder.
/// // (if the function takes no arguments, then you must use `()` as the argument)
/// let init_value: String = contract
/// .method::<_, String>("getValue", ())?
/// .call()
/// .await?;
///
/// // Non-constant methods are executed via the `send()` call on the method builder.
/// let call = contract
/// .method::<_, H256>("setValue", "hi".to_owned())?;
/// let pending_tx = call.send().await?;
///
/// // `await`ing on the pending transaction resolves to a transaction receipt
/// let receipt = pending_tx.confirmations(6).await?;
///
/// # Ok(())
/// # }
/// ```
///
/// # Event Logging
///
/// Querying structured logs requires you to have defined a struct with the expected
/// datatypes and to have implemented `Detokenize` for it. This boilerplate code
/// is generated for you via the [`abigen`] and [`Abigen` builder] utilities.
//
// Ignore because `ethers-contract-derive` macros do not work in doctests in `ethers-contract`.
/// ```ignore
/// # async fn foo() -> Result<(), Box<dyn std::error::Error>> {
/// use ethers_core::{abi::Abi, types::Address};
/// use ethers_contract::{Contract, EthEvent};
/// use ethers_providers::{Provider, Http, Middleware};
/// use std::{convert::TryFrom, sync::Arc};
/// use ethers_core::abi::{Detokenize, Token, InvalidOutputType};
/// # // this is a fake address used just for this example
/// # let address = "eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee".parse::<Address>()?;
/// # let abi: Abi = serde_json::from_str("[]")?;
/// # let client = Provider::<Http>::try_from("http://localhost:8545").unwrap();
/// # let contract = Contract::new(address, abi, Arc::new(client));
///
/// #[derive(Clone, Debug, EthEvent)]
/// struct ValueChanged {
/// old_author: Address,
/// new_author: Address,
/// old_value: String,
/// new_value: String,
/// }
///
/// let logs: Vec<ValueChanged> = contract
/// .event()
/// .from_block(0u64)
/// .query()
/// .await?;
///
/// println!("{:?}", logs);
/// # Ok(())
/// # }
/// ```
///
/// _Disclaimer: these above docs have been adapted from the corresponding [ethers.js page](https://docs.ethers.io/ethers.js/html/api-contract.html)_
///
/// # Usage Note
///
/// `ContractInternal` accepts any client that implements `B: Borrow<M>` where
/// `M :Middleware`. Previous `Contract` versions used only arcs, and relied
/// heavily on [`Arc`]. Due to constraints on the [`FunctionCall`] type,
/// calling contracts requires a `B: Borrow<M> + Clone`. This is fine for most
/// middlware. However, when `B` is an owned middleware that is not Clone, we
/// cannot issue contract calls. Some notable exceptions:
///
/// - `NonceManagerMiddleware`
/// - `SignerMiddleware` (when using a non-Clone Signer)
///
/// When using non-Clone middlewares, instead of instantiating a contract that
/// OWNS the middlware, pass the contract a REFERENCE to the middleware. This
/// will fix the trait bounds issue (as `&M` is always `Clone`).
///
/// We expect to fix this fully in a future version
///
/// [`abigen`]: macro.abigen.html
/// [`Abigen` builder]: struct.Abigen.html
/// [`event`]: method@crate::ContractInstance::event
/// [`method`]: method@crate::ContractInstance::method
#[derive(Debug)]
pub struct ContractInstance<B, M> {
address: Address,
base_contract: BaseContract,
client: B,
_m: PhantomData<M>,
}
impl<B, M> std::ops::Deref for ContractInstance<B, M>
where
B: Borrow<M>,
{
type Target = BaseContract;
fn deref(&self) -> &Self::Target {
&self.base_contract
}
}
impl<B, M> Clone for ContractInstance<B, M>
where
B: Clone + Borrow<M>,
{
fn clone(&self) -> Self {
ContractInstance {
base_contract: self.base_contract.clone(),
client: self.client.clone(),
address: self.address,
_m: self._m,
}
}
}
impl<B, M> ContractInstance<B, M>
where
B: Borrow<M>,
{
/// Returns the contract's address
pub fn address(&self) -> Address {
self.address
}
/// Returns a reference to the contract's ABI.
pub fn abi(&self) -> &Abi {
&self.base_contract.abi
}
/// Returns a pointer to the contract's client.
pub fn client(&self) -> B
where
B: Clone,
{
self.client.clone()
}
/// Returns a reference to the contract's client.
pub fn client_ref(&self) -> &M {
self.client.borrow()
}
}
impl<B, M> ContractInstance<B, M>
where
B: Borrow<M>,
M: Middleware,
{
/// Returns an [`Event`] builder for the provided event.
///
/// This function operates in a static context, then it does not require a `self` to reference
/// to instantiate an [`Event`] builder.
pub fn event_of_type<D: EthEvent>(client: B) -> Event<B, M, D> {
Event {
provider: client,
filter: Filter::new().event(&D::abi_signature()),
datatype: PhantomData,
_m: PhantomData,
}
}
}
impl<B, M> ContractInstance<B, M>
where
B: Borrow<M>,
M: Middleware,
{
/// Creates a new contract from the provided client, abi and address
pub fn new(address: impl Into<Address>, abi: impl Into<BaseContract>, client: B) -> Self {
Self { base_contract: abi.into(), client, address: address.into(), _m: PhantomData }
}
/// Returns a new contract instance using the provided client
///
/// Clones `self` internally
#[must_use]
pub fn connect<N>(&self, client: Arc<N>) -> ContractInstance<Arc<N>, N>
where
N: Middleware,
{
ContractInstance {
base_contract: self.base_contract.clone(),
client,
address: self.address,
_m: PhantomData,
}
}
/// Returns a new contract instance using the provided client
///
/// Clones `self` internally
#[must_use]
pub fn connect_with<C, N>(&self, client: C) -> ContractInstance<C, N>
where
C: Borrow<N>,
{
ContractInstance {
base_contract: self.base_contract.clone(),
client,
address: self.address,
_m: PhantomData,
}
}
}
impl<B, M> ContractInstance<B, M>
where
B: Clone + Borrow<M>,
M: Middleware,
{
/// Returns an [`Event`] builder with the provided filter.
pub fn event_with_filter<D>(&self, filter: Filter) -> Event<B, M, D> {
Event {
provider: self.client.clone(),
filter: filter.address(ValueOrArray::Value(self.address)),
datatype: PhantomData,
_m: PhantomData,
}
}
/// Returns an [`Event`] builder for the provided event.
pub fn event<D: EthEvent>(&self) -> Event<B, M, D> {
D::new(Filter::new(), self.client.clone())
}
/// Returns an [`Event`] builder with the provided name.
pub fn event_for_name<D>(&self, name: &str) -> Result<Event<B, M, D>, Error> {
// get the event's full name
let event = self.base_contract.abi.event(name)?;
Ok(self.event_with_filter(Filter::new().event(&event.abi_signature())))
}
fn method_func<T: Tokenize, D: Detokenize>(
&self,
function: &Function,
args: T,
) -> Result<FunctionCall<B, M, D>, AbiError> {
let data = encode_function_data(function, args)?;
#[cfg(feature = "legacy")]
let tx = TransactionRequest {
to: Some(self.address.into()),
data: Some(data),
..Default::default()
};
#[cfg(not(feature = "legacy"))]
let tx = Eip1559TransactionRequest {
to: Some(self.address.into()),
data: Some(data),
..Default::default()
};
let tx = tx.into();
Ok(FunctionCall {
tx,
client: self.client.clone(),
block: None,
function: function.to_owned(),
datatype: PhantomData,
_m: self._m,
})
}
/// Returns a transaction builder for the selected function signature. This should be
/// preferred if there are overloaded functions in your smart contract
pub fn method_hash<T: Tokenize, D: Detokenize>(
&self,
signature: Selector,
args: T,
) -> Result<FunctionCall<B, M, D>, AbiError> {
let function = self
.base_contract
.methods
.get(&signature)
.map(|(name, index)| &self.base_contract.abi.functions[name][*index])
.ok_or_else(|| Error::InvalidName(hex::encode(signature)))?;
self.method_func(function, args)
}
/// Returns a transaction builder for the provided function name. If there are
/// multiple functions with the same name due to overloading, consider using
/// the `method_hash` method instead, since this will use the first match.
pub fn method<T: Tokenize, D: Detokenize>(
&self,
name: &str,
args: T,
) -> Result<FunctionCall<B, M, D>, AbiError> {
// get the function
let function = self.base_contract.abi.function(name)?;
self.method_func(function, args)
}
/// Returns a new contract instance at `address`.
///
/// Clones `self` internally
#[must_use]
pub fn at<T: Into<Address>>(&self, address: T) -> Self {
let mut this = self.clone();
this.address = address.into();
this
}
}