1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
//! Specific helper functions for loading an offline K256 Private Key stored on disk
use super::Wallet;

use eth_keystore::KeystoreError;
use ethers_core::{
    k256::{
        ecdsa::SigningKey, elliptic_curve::error::Error as K256Error, EncodedPoint as K256PublicKey,
    },
    rand::{CryptoRng, Rng},
    types::Address,
    utils::keccak256,
};
use std::{path::Path, str::FromStr};
use thiserror::Error;

#[derive(Error, Debug)]
/// Error thrown by the Wallet module
pub enum WalletError {
    /// Underlying eth keystore error
    #[error(transparent)]
    EthKeystoreError(#[from] KeystoreError),
}

impl Clone for Wallet<SigningKey> {
    fn clone(&self) -> Self {
        Self {
            // TODO: Can we have a better way to clone here?
            signer: SigningKey::from_bytes(&*self.signer.to_bytes()).unwrap(),
            address: self.address,
            chain_id: self.chain_id,
        }
    }
}

impl Wallet<SigningKey> {
    // TODO: Add support for mnemonic

    /// Creates a new random encrypted JSON with the provided password and stores it in the
    /// provided directory
    pub fn new_keystore<P, R, S>(dir: P, rng: &mut R, password: S) -> Result<Self, WalletError>
    where
        P: AsRef<Path>,
        R: Rng + CryptoRng,
        S: AsRef<[u8]>,
    {
        let (secret, _) = eth_keystore::new(dir, rng, password)?;
        let signer = SigningKey::from_bytes(secret.as_slice())
            .expect("private key should always be convertible to signing key");
        let address = key_to_address(&signer);
        Ok(Self {
            signer,
            address,
            chain_id: None,
        })
    }

    /// Decrypts an encrypted JSON from the provided path to construct a Wallet instance
    pub fn decrypt_keystore<P, S>(keypath: P, password: S) -> Result<Self, WalletError>
    where
        P: AsRef<Path>,
        S: AsRef<[u8]>,
    {
        let secret = eth_keystore::decrypt_key(keypath, password)?;
        let signer = SigningKey::from_bytes(secret.as_slice())
            .expect("private key should always be convertible to signing key");
        let address = key_to_address(&signer);
        Ok(Self {
            signer,
            address,
            chain_id: None,
        })
    }

    /// Creates a new random keypair seeded with the provided RNG
    pub fn new<R: Rng + CryptoRng>(rng: &mut R) -> Self {
        let signer = SigningKey::random(rng);
        let address = key_to_address(&signer);
        Self {
            signer,
            address,
            chain_id: None,
        }
    }
}

fn key_to_address(secret_key: &SigningKey) -> Address {
    // TODO: Can we do this in a better way?
    let uncompressed_pub_key = K256PublicKey::from(&secret_key.verify_key()).decompress();
    let public_key = uncompressed_pub_key.unwrap().to_bytes();
    debug_assert_eq!(public_key[0], 0x04);
    let hash = keccak256(&public_key[1..]);
    Address::from_slice(&hash[12..])
}

impl PartialEq for Wallet<SigningKey> {
    fn eq(&self, other: &Self) -> bool {
        self.signer.to_bytes().eq(&other.signer.to_bytes())
            && self.address == other.address
            && self.chain_id == other.chain_id
    }
}

impl From<SigningKey> for Wallet<SigningKey> {
    fn from(signer: SigningKey) -> Self {
        let address = key_to_address(&signer);

        Self {
            signer,
            address,
            chain_id: None,
        }
    }
}

use ethers_core::k256::SecretKey as K256SecretKey;

impl From<K256SecretKey> for Wallet<SigningKey> {
    fn from(key: K256SecretKey) -> Self {
        let signer = SigningKey::from_bytes(&*key.to_bytes())
            .expect("private key should always be convertible to signing key");
        let address = key_to_address(&signer);

        Self {
            signer,
            address,
            chain_id: None,
        }
    }
}

impl FromStr for Wallet<SigningKey> {
    type Err = K256Error;

    fn from_str(src: &str) -> Result<Self, Self::Err> {
        let src = hex::decode(src).expect("invalid hex when reading PrivateKey");
        let sk = SigningKey::from_bytes(&src).unwrap(); // TODO
        Ok(sk.into())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::Signer;
    use std::fs;
    use tempfile::tempdir;

    #[tokio::test]
    async fn encrypted_json_keystore() {
        // create and store a random encrypted JSON keystore in this directory
        let dir = tempdir().unwrap();
        let mut rng = rand::thread_rng();
        let key = Wallet::<SigningKey>::new_keystore(&dir, &mut rng, "randpsswd").unwrap();

        // sign a message using the above key
        let message = "Some data";
        let signature = key.sign_message(message).await.unwrap();

        // read from the encrypted JSON keystore and decrypt it, while validating that the
        // signatures produced by both the keys should match
        let paths = fs::read_dir(dir).unwrap();
        for path in paths {
            let path = path.unwrap().path();
            let key2 = Wallet::<SigningKey>::decrypt_keystore(&path.clone(), "randpsswd").unwrap();
            let signature2 = key2.sign_message(message).await.unwrap();
            assert_eq!(signature, signature2);
            assert!(std::fs::remove_file(&path).is_ok());
        }
    }

    #[tokio::test]
    async fn signs_msg() {
        let message = "Some data";
        let hash = ethers_core::utils::hash_message(message);
        let key = Wallet::<SigningKey>::new(&mut rand::thread_rng());
        let address = key.address;

        // sign a message
        let signature = key.sign_message(message).await.unwrap();

        // ecrecover via the message will hash internally
        let recovered = signature.recover(message).unwrap();

        // if provided with a hash, it will skip hashing
        let recovered2 = signature.recover(hash).unwrap();

        // verifies the signature is produced by `address`
        signature.verify(message, address).unwrap();

        assert_eq!(recovered, address);
        assert_eq!(recovered2, address);
    }

    #[tokio::test]
    #[cfg(not(feature = "celo"))]
    async fn signs_tx() {
        use ethers_core::types::TransactionRequest;
        // retrieved test vector from:
        // https://web3js.readthedocs.io/en/v1.2.0/web3-eth-accounts.html#eth-accounts-signtransaction
        let tx = TransactionRequest {
            from: None,
            to: Some(
                "F0109fC8DF283027b6285cc889F5aA624EaC1F55"
                    .parse::<Address>()
                    .unwrap()
                    .into(),
            ),
            value: Some(1_000_000_000.into()),
            gas: Some(2_000_000.into()),
            nonce: Some(0.into()),
            gas_price: Some(21_000_000_000u128.into()),
            data: None,
        };
        let chain_id = 1u64;

        let wallet: Wallet<SigningKey> =
            "4c0883a69102937d6231471b5dbb6204fe5129617082792ae468d01a3f362318"
                .parse()
                .unwrap();
        let wallet = wallet.set_chain_id(chain_id);

        let sig = wallet.sign_transaction(&tx).await.unwrap();
        let sighash = tx.sighash(Some(chain_id));
        assert!(sig.verify(sighash, wallet.address).is_ok());
    }

    #[test]
    fn key_to_address() {
        let wallet: Wallet<SigningKey> =
            "0000000000000000000000000000000000000000000000000000000000000001"
                .parse()
                .unwrap();
        assert_eq!(
            wallet.address,
            Address::from_str("7E5F4552091A69125d5DfCb7b8C2659029395Bdf").expect("Decoding failed")
        );

        let wallet: Wallet<SigningKey> =
            "0000000000000000000000000000000000000000000000000000000000000002"
                .parse()
                .unwrap();
        assert_eq!(
            wallet.address,
            Address::from_str("2B5AD5c4795c026514f8317c7a215E218DcCD6cF").expect("Decoding failed")
        );

        let wallet: Wallet<SigningKey> =
            "0000000000000000000000000000000000000000000000000000000000000003"
                .parse()
                .unwrap();
        assert_eq!(
            wallet.address,
            Address::from_str("6813Eb9362372EEF6200f3b1dbC3f819671cBA69").expect("Decoding failed")
        );
    }
}