1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
//! Linux event device handling.
//!
//! The Linux kernel's "evdev" subsystem exposes input devices to userspace in a generic,
//! consistent way. I'll try to explain the device model as completely as possible. The upstream
//! kernel documentation is split across two files:
//!
//! - <https://www.kernel.org/doc/Documentation/input/event-codes.txt>
//! - <https://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt>
//!
//! The `evdev` kernel system exposes input devices as character devices in `/dev/input`,
//! typically `/dev/input/eventX` where `X` is an integer.
//! Userspace applications can use `ioctl` system calls to interact with these devices.
//! Libraries such as this one abstract away the low level calls to provide a high level
//! interface.
//!
//! Applications can interact with `uinput` by writing to `/dev/uinput` to create virtual
//! devices and send events to the virtual devices.
//! Virtual devices are created in `/sys/devices/virtual/input`.
//!
//! Devices emit events, represented by the [`InputEvent`] type. Each device supports a few different
//! kinds of events, specified by the [`EventType`] struct and the [`Device::supported_events()`]
//! method. Most event types also have a "subtype", e.g. a `KEY` event with a `KEY_ENTER` code. This
//! type+subtype combo is represented by [`InputEventKind`]/[`InputEvent::kind()`]. The individual
//! subtypes of a type that a device supports can be retrieved through the `Device::supported_*()`
//! methods, e.g. [`Device::supported_keys()`]:
//!
//! ```no_run
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! use evdev::{Device, Key};
//! let device = Device::open("/dev/input/event0")?;
//! // check if the device has an ENTER key
//! if device.supported_keys().map_or(false, |keys| keys.contains(Key::KEY_ENTER)) {
//! println!("are you prepared to ENTER the world of evdev?");
//! } else {
//! println!(":(");
//! }
//! # Ok(())
//! # }
//! ```
//!
//! All events (even single events) are sent in batches followed by a synchronization event:
//! `EV_SYN / SYN_REPORT / 0`.
//! Events are grouped into batches based on if they are related and occur simultaneously,
//! for example movement of a mouse triggers a movement event for the `X` and `Y` axes
//! separately in a batch of 2 events.
//!
//! The evdev crate exposes functions to query the current state of a device from the kernel, as
//! well as a function that can be called continuously to provide an iterator over update events
//! as they arrive.
//!
//!
//! # Synchronizing versus Raw modes
//!
//! This library can be used in either Raw or Synchronizing modes, which correspond roughly to
//! evdev's `LIBEVDEV_READ_FLAG_NORMAL` and `LIBEVDEV_READ_FLAG_SYNC` modes, respectively.
//! In both modes, calling `fetch_events` and driving the resulting iterator to completion
//! will provide a stream of real-time events from the underlying kernel device state.
//! As the state changes, the kernel will write events into a ring buffer. If the buffer becomes full, the
//! kernel will *drop* events from the ring buffer and leave an event telling userspace that it
//! did so. At this point, if the application were using the events it received to update its
//! internal idea of what state the hardware device is in, it will be wrong: it is missing some
//! events.
//!
//! In synchronous mode, this library tries to ease that pain by removing the corrupted events
//! and injecting fake events as if the device had updated normally. Note that this is best-effort;
//! events can never be recovered once lost. This synchronization comes at a performance cost: each
//! set of input events read from the kernel in turn updates an internal state buffer, and events
//! must be internally held back until the end of each frame. If this latency is unacceptable or
//! for any reason you want to see every event directly, a raw stream reader is also provided.
//!
//! As an example of how synchronization behaves, if a switch is toggled twice there will be two switch events
//! in the buffer. However, if the kernel needs to drop events, when the device goes to synchronize
//! state with the kernel only one (or zero, if the switch is in the same state as it was before
//! the sync) switch events will be visible in the stream.
//!
//! This cache can also be queried. For example, the [`DeviceState::led_vals`] method will tell you which
//! LEDs are currently lit on the device. As calling code consumes each iterator, this state will be
//! updated, and it will be fully re-synchronized with the kernel if the stream drops any events.
//!
//! It is recommended that you dedicate a thread to processing input events, or use epoll or an
//! async runtime with the fd returned by `<Device as AsRawFd>::as_raw_fd` to process events when
//! they are ready.
//!
//! For demonstrations of how to use this library in blocking, nonblocking, and async (tokio) modes,
//! please reference the "examples" directory.
// should really be cfg(target_os = "linux") and maybe also android?
#![cfg(unix)]
// has to be first for its macro
#[macro_use]
mod attribute_set;
mod compat;
mod constants;
mod device_state;
mod error;
mod ff;
mod inputid;
pub mod raw_stream;
mod scancodes;
mod sync_stream;
mod sys;
pub mod uinput;
#[cfg(feature = "serde")]
use serde_1::{Deserialize, Serialize};
use crate::compat::{input_absinfo, input_event, uinput_abs_setup};
use std::fmt;
use std::time::{Duration, SystemTime};
pub use attribute_set::{AttributeSet, AttributeSetRef, EvdevEnum};
pub use constants::*;
pub use device_state::DeviceState;
pub use error::Error;
pub use ff::*;
pub use inputid::*;
pub use raw_stream::{AutoRepeat, FFEffect};
pub use scancodes::*;
pub use sync_stream::*;
const EVENT_BATCH_SIZE: usize = 32;
/// A convenience mapping from an event `(type, code)` to an enumeration.
///
/// Note that this does not capture an event's value, just the type and code.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(crate = "serde_1"))]
pub enum InputEventKind {
Synchronization(Synchronization),
Key(Key),
RelAxis(RelativeAxisType),
AbsAxis(AbsoluteAxisType),
Misc(MiscType),
Switch(SwitchType),
Led(LedType),
Sound(SoundType),
ForceFeedback(u16),
ForceFeedbackStatus(u16),
UInput(u16),
Other,
}
/// A wrapped `input_absinfo` returned by EVIOCGABS and used with uinput to set up absolute
/// axes
///
/// `input_absinfo` is a struct containing six fields:
/// - `value: s32`
/// - `minimum: s32`
/// - `maximum: s32`
/// - `fuzz: s32`
/// - `flat: s32`
/// - `resolution: s32`
///
#[derive(Copy, Clone)]
#[repr(transparent)]
pub struct AbsInfo(input_absinfo);
impl AbsInfo {
#[inline]
pub fn value(&self) -> i32 {
self.0.value
}
#[inline]
pub fn minimum(&self) -> i32 {
self.0.minimum
}
#[inline]
pub fn maximum(&self) -> i32 {
self.0.maximum
}
#[inline]
pub fn fuzz(&self) -> i32 {
self.0.fuzz
}
#[inline]
pub fn flat(&self) -> i32 {
self.0.flat
}
#[inline]
pub fn resolution(&self) -> i32 {
self.0.resolution
}
/// Creates a new AbsInfo, particurarily useful for uinput
pub fn new(
value: i32,
minimum: i32,
maximum: i32,
fuzz: i32,
flat: i32,
resolution: i32,
) -> Self {
AbsInfo(input_absinfo {
value,
minimum,
maximum,
fuzz,
flat,
resolution,
})
}
}
/// A wrapped `uinput_abs_setup`, used to set up analogue axes with uinput
///
/// `uinput_abs_setup` is a struct containing two fields:
/// - `code: u16`
/// - `absinfo: input_absinfo`
#[derive(Copy, Clone)]
#[repr(transparent)]
pub struct UinputAbsSetup(uinput_abs_setup);
impl UinputAbsSetup {
#[inline]
pub fn code(&self) -> u16 {
self.0.code
}
#[inline]
pub fn absinfo(&self) -> AbsInfo {
AbsInfo(self.0.absinfo)
}
/// Creates new UinputAbsSetup
pub fn new(code: AbsoluteAxisType, absinfo: AbsInfo) -> Self {
UinputAbsSetup(uinput_abs_setup {
code: code.0,
absinfo: absinfo.0,
})
}
}
/// A wrapped `input_event` returned by the input device via the kernel.
///
/// `input_event` is a struct containing four fields:
/// - `time: timeval`
/// - `type_: u16`
/// - `code: u16`
/// - `value: s32`
///
/// The meaning of the "code" and "value" fields will depend on the underlying type of event.
#[derive(Copy, Clone)]
#[repr(transparent)]
pub struct InputEvent(input_event);
impl InputEvent {
/// Returns the timestamp associated with the event.
#[inline]
pub fn timestamp(&self) -> SystemTime {
timeval_to_systime(&self.0.time)
}
/// Returns the type of event this describes, e.g. Key, Switch, etc.
#[inline]
pub fn event_type(&self) -> EventType {
EventType(self.0.type_)
}
/// Returns the raw "code" field directly from input_event.
#[inline]
pub fn code(&self) -> u16 {
self.0.code
}
/// A convenience function to return `self.code()` wrapped in a certain newtype determined by
/// the type of this event.
///
/// This is useful if you want to match events by specific key codes or axes. Note that this
/// does not capture the event value, just the type and code.
#[inline]
pub fn kind(&self) -> InputEventKind {
let code = self.code();
match self.event_type() {
EventType::SYNCHRONIZATION => InputEventKind::Synchronization(Synchronization(code)),
EventType::KEY => InputEventKind::Key(Key::new(code)),
EventType::RELATIVE => InputEventKind::RelAxis(RelativeAxisType(code)),
EventType::ABSOLUTE => InputEventKind::AbsAxis(AbsoluteAxisType(code)),
EventType::MISC => InputEventKind::Misc(MiscType(code)),
EventType::SWITCH => InputEventKind::Switch(SwitchType(code)),
EventType::LED => InputEventKind::Led(LedType(code)),
EventType::SOUND => InputEventKind::Sound(SoundType(code)),
EventType::FORCEFEEDBACK => InputEventKind::ForceFeedback(code),
EventType::FORCEFEEDBACKSTATUS => InputEventKind::ForceFeedbackStatus(code),
EventType::UINPUT => InputEventKind::UInput(code),
_ => InputEventKind::Other,
}
}
/// Returns the raw "value" field directly from input_event.
///
/// For keys and switches the values 0 and 1 map to pressed and not pressed respectively.
/// For axes, the values depend on the hardware and driver implementation.
#[inline]
pub fn value(&self) -> i32 {
self.0.value
}
/// Create a new InputEvent. Only really useful for emitting events on virtual devices.
pub fn new(type_: EventType, code: u16, value: i32) -> Self {
InputEvent(input_event {
time: libc::timeval {
tv_sec: 0,
tv_usec: 0,
},
type_: type_.0,
code,
value,
})
}
/// Create a new InputEvent with the time field set to "now" on the system clock.
///
/// Note that this isn't usually necessary simply for emitting events on a virtual device, as
/// even though [`InputEvent::new`] creates an `input_event` with the time field as zero,
/// the kernel will update `input_event.time` when it emits the events to any programs reading
/// the event "file".
pub fn new_now(type_: EventType, code: u16, value: i32) -> Self {
InputEvent(input_event {
time: systime_to_timeval(&SystemTime::now()),
type_: type_.0,
code,
value,
})
}
}
impl From<input_event> for InputEvent {
fn from(raw: input_event) -> Self {
Self(raw)
}
}
impl AsRef<input_event> for InputEvent {
fn as_ref(&self) -> &input_event {
&self.0
}
}
impl fmt::Debug for InputEvent {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut debug = f.debug_struct("InputEvent");
debug.field("time", &self.timestamp());
let kind = self.kind();
if let InputEventKind::Other = kind {
debug
.field("type", &self.event_type())
.field("code", &self.code());
} else {
debug.field("kind", &kind);
}
debug.field("value", &self.value()).finish()
}
}
/// Crawls `/dev/input` for evdev devices.
///
/// Will not bubble up any errors in opening devices or traversing the directory. Instead returns
/// an empty iterator or omits the devices that could not be opened.
pub fn enumerate() -> EnumerateDevices {
EnumerateDevices {
inner: raw_stream::enumerate(),
}
}
pub struct EnumerateDevices {
inner: raw_stream::EnumerateDevices,
}
impl Iterator for EnumerateDevices {
type Item = Device;
fn next(&mut self) -> Option<Device> {
self.inner.next().map(Device::from_raw_device)
}
}
/// A safe Rust version of clock_gettime against CLOCK_REALTIME
fn systime_to_timeval(time: &SystemTime) -> libc::timeval {
let (sign, dur) = match time.duration_since(SystemTime::UNIX_EPOCH) {
Ok(dur) => (1, dur),
Err(e) => (-1, e.duration()),
};
libc::timeval {
tv_sec: dur.as_secs() as libc::time_t * sign,
tv_usec: dur.subsec_micros() as libc::suseconds_t,
}
}
fn timeval_to_systime(tv: &libc::timeval) -> SystemTime {
let dur = Duration::new(tv.tv_sec.unsigned_abs(), tv.tv_usec as u32 * 1000);
if tv.tv_sec >= 0 {
SystemTime::UNIX_EPOCH + dur
} else {
SystemTime::UNIX_EPOCH - dur
}
}
/// SAFETY: T must not have any padding or otherwise uninitialized bytes inside of it
pub(crate) unsafe fn cast_to_bytes<T: ?Sized>(mem: &T) -> &[u8] {
std::slice::from_raw_parts(mem as *const T as *const u8, std::mem::size_of_val(mem))
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct EnumParseError(());