1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
//! Notify async tasks or threads.
//!
//! This is a synchronization primitive similar to [eventcounts] invented by Dmitry Vyukov.
//!
//! You can use this crate to turn non-blocking data structures into async or blocking data
//! structures. See a [simple mutex] implementation that exposes an async and a blocking interface
//! for acquiring locks.
//!
//! [eventcounts]: https://www.1024cores.net/home/lock-free-algorithms/eventcounts
//! [simple mutex]: https://github.com/smol-rs/event-listener/blob/master/examples/mutex.rs
//!
//! # Examples
//!
//! Wait until another thread sets a boolean flag:
//!
//! ```
//! use std::sync::atomic::{AtomicBool, Ordering};
//! use std::sync::Arc;
//! use std::thread;
//! use std::time::Duration;
//! use std::usize;
//! use event_listener::Event;
//!
//! let flag = Arc::new(AtomicBool::new(false));
//! let event = Arc::new(Event::new());
//!
//! // Spawn a thread that will set the flag after 1 second.
//! thread::spawn({
//! let flag = flag.clone();
//! let event = event.clone();
//! move || {
//! // Wait for a second.
//! thread::sleep(Duration::from_secs(1));
//!
//! // Set the flag.
//! flag.store(true, Ordering::SeqCst);
//!
//! // Notify all listeners that the flag has been set.
//! event.notify(usize::MAX);
//! }
//! });
//!
//! // Wait until the flag is set.
//! loop {
//! // Check the flag.
//! if flag.load(Ordering::SeqCst) {
//! break;
//! }
//!
//! // Start listening for events.
//! let mut listener = event.listen();
//!
//! // Check the flag again after creating the listener.
//! if flag.load(Ordering::SeqCst) {
//! break;
//! }
//!
//! // Wait for a notification and continue the loop.
//! listener.as_mut().wait();
//! }
//! ```
//!
//! # Features
//!
//! - The `portable-atomic` feature enables the use of the [`portable-atomic`] crate to provide
//! atomic operations on platforms that don't support them.
//!
//! [`portable-atomic`]: https://crates.io/crates/portable-atomic
#![cfg_attr(all(not(feature = "std"), not(test)), no_std)]
#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]
#![doc(
html_favicon_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
#![doc(
html_logo_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
extern crate alloc;
#[cfg_attr(feature = "std", path = "std.rs")]
#[cfg_attr(not(feature = "std"), path = "no_std.rs")]
mod sys;
mod notify;
use alloc::boxed::Box;
use core::borrow::Borrow;
use core::fmt;
use core::future::Future;
use core::mem::ManuallyDrop;
use core::pin::Pin;
use core::ptr;
use core::task::{Context, Poll, Waker};
#[cfg(all(feature = "std", not(target_family = "wasm")))]
use {
parking::{Parker, Unparker},
std::time::{Duration, Instant},
};
use sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
use sync::{Arc, WithMut};
use notify::{Internal, NotificationPrivate};
pub use notify::{IntoNotification, Notification};
/// Useful traits for notifications.
pub mod prelude {
pub use crate::{IntoNotification, Notification};
}
/// Inner state of [`Event`].
struct Inner<T> {
/// The number of notified entries, or `usize::MAX` if all of them have been notified.
///
/// If there are no entries, this value is set to `usize::MAX`.
notified: AtomicUsize,
/// Inner queue of event listeners.
///
/// On `std` platforms, this is an intrusive linked list. On `no_std` platforms, this is a
/// more traditional `Vec` of listeners, with an atomic queue used as a backup for high
/// contention.
list: sys::List<T>,
}
impl<T> Inner<T> {
fn new() -> Self {
Self {
notified: AtomicUsize::new(core::usize::MAX),
list: sys::List::new(),
}
}
}
/// A synchronization primitive for notifying async tasks and threads.
///
/// Listeners can be registered using [`Event::listen()`]. There are two ways to notify listeners:
///
/// 1. [`Event::notify()`] notifies a number of listeners.
/// 2. [`Event::notify_additional()`] notifies a number of previously unnotified listeners.
///
/// If there are no active listeners at the time a notification is sent, it simply gets lost.
///
/// There are two ways for a listener to wait for a notification:
///
/// 1. In an asynchronous manner using `.await`.
/// 2. In a blocking manner by calling [`EventListener::wait()`] on it.
///
/// If a notified listener is dropped without receiving a notification, dropping will notify
/// another active listener. Whether one *additional* listener will be notified depends on what
/// kind of notification was delivered.
///
/// Listeners are registered and notified in the first-in first-out fashion, ensuring fairness.
pub struct Event<T = ()> {
/// A pointer to heap-allocated inner state.
///
/// This pointer is initially null and gets lazily initialized on first use. Semantically, it
/// is an `Arc<Inner>` so it's important to keep in mind that it contributes to the [`Arc`]'s
/// reference count.
inner: AtomicPtr<Inner<T>>,
}
unsafe impl<T: Send> Send for Event<T> {}
unsafe impl<T: Send> Sync for Event<T> {}
impl<T> core::panic::UnwindSafe for Event<T> {}
impl<T> core::panic::RefUnwindSafe for Event<T> {}
impl<T> fmt::Debug for Event<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.try_inner() {
Some(inner) => {
let notified_count = inner.notified.load(Ordering::Relaxed);
let total_count = match inner.list.total_listeners() {
Ok(total_count) => total_count,
Err(_) => {
return f
.debug_tuple("Event")
.field(&format_args!("<locked>"))
.finish()
}
};
f.debug_struct("Event")
.field("listeners_notified", ¬ified_count)
.field("listeners_total", &total_count)
.finish()
}
None => f
.debug_tuple("Event")
.field(&format_args!("<uninitialized>"))
.finish(),
}
}
}
impl Default for Event {
#[inline]
fn default() -> Self {
Self::new()
}
}
impl<T> Event<T> {
/// Creates a new `Event` with a tag type.
///
/// Tagging cannot be implemented efficiently on `no_std`, so this is only available when the
/// `std` feature is enabled.
///
/// # Examples
///
/// ```
/// use event_listener::Event;
///
/// let event = Event::<usize>::with_tag();
/// ```
#[cfg(feature = "std")]
#[inline]
pub const fn with_tag() -> Self {
Self {
inner: AtomicPtr::new(ptr::null_mut()),
}
}
/// Tell whether any listeners are currently notified.
///
/// # Examples
///
/// ```
/// use event_listener::Event;
///
/// let event = Event::new();
/// let listener = event.listen();
/// assert!(!event.is_notified());
///
/// event.notify(1);
/// assert!(event.is_notified());
/// ```
#[inline]
pub fn is_notified(&self) -> bool {
self.try_inner()
.map_or(false, |inner| inner.notified.load(Ordering::Acquire) > 0)
}
/// Returns a guard listening for a notification.
///
/// This method emits a `SeqCst` fence after registering a listener. For now, this method
/// is an alias for calling [`EventListener::new()`], pinning it to the heap, and then
/// inserting it into a list.
///
/// # Examples
///
/// ```
/// use event_listener::Event;
///
/// let event = Event::new();
/// let listener = event.listen();
/// ```
///
/// # Caveats
///
/// The above example is equivalent to this code:
///
/// ```
/// use event_listener::{Event, EventListener};
///
/// let event = Event::new();
/// let mut listener = Box::pin(EventListener::new());
/// listener.as_mut().listen(&event);
/// ```
///
/// It creates a new listener, pins it to the heap, and inserts it into the linked list
/// of listeners. While this type of usage is simple, it may be desired to eliminate this
/// heap allocation. In this case, consider using the [`EventListener::new`] constructor
/// directly, which allows for greater control over where the [`EventListener`] is
/// allocated. However, users of this `new` method must be careful to ensure that the
/// [`EventListener`] is `listen`ing before waiting on it; panics may occur otherwise.
#[cold]
pub fn listen(&self) -> Pin<Box<EventListener<T>>> {
let mut listener = Box::pin(EventListener::new());
listener.as_mut().listen(self);
listener
}
/// Notifies a number of active listeners.
///
/// The number is allowed to be zero or exceed the current number of listeners.
///
/// The [`Notification`] trait is used to define what kind of notification is delivered.
/// The default implementation (implemented on `usize`) is a notification that only notifies
/// *at least* the specified number of listeners.
///
/// In certain cases, this function emits a `SeqCst` fence before notifying listeners.
///
/// This function returns the number of [`EventListener`]s that were notified by this call.
///
/// # Caveats
///
/// If the `std` feature is disabled, the notification will be delayed under high contention,
/// such as when another thread is taking a while to `notify` the event. In this circumstance,
/// this function will return `0` instead of the number of listeners actually notified. Therefore
/// if the `std` feature is disabled the return value of this function should not be relied upon
/// for soundness and should be used only as a hint.
///
/// If the `std` feature is enabled, no spurious returns are possible, since the `std`
/// implementation uses system locking primitives to ensure there is no unavoidable
/// contention.
///
/// # Examples
///
/// Use the default notification strategy:
///
/// ```
/// use event_listener::Event;
///
/// let event = Event::new();
///
/// // This notification gets lost because there are no listeners.
/// event.notify(1);
///
/// let listener1 = event.listen();
/// let listener2 = event.listen();
/// let listener3 = event.listen();
///
/// // Notifies two listeners.
/// //
/// // Listener queueing is fair, which means `listener1` and `listener2`
/// // get notified here since they start listening before `listener3`.
/// event.notify(2);
/// ```
///
/// Notify without emitting a `SeqCst` fence. This uses the [`relaxed`] notification strategy.
/// This is equivalent to calling [`Event::notify_relaxed()`].
///
/// [`relaxed`]: IntoNotification::relaxed
///
/// ```
/// use event_listener::{prelude::*, Event};
/// use std::sync::atomic::{self, Ordering};
///
/// let event = Event::new();
///
/// // This notification gets lost because there are no listeners.
/// event.notify(1.relaxed());
///
/// let listener1 = event.listen();
/// let listener2 = event.listen();
/// let listener3 = event.listen();
///
/// // We should emit a fence manually when using relaxed notifications.
/// atomic::fence(Ordering::SeqCst);
///
/// // Notifies two listeners.
/// //
/// // Listener queueing is fair, which means `listener1` and `listener2`
/// // get notified here since they start listening before `listener3`.
/// event.notify(2.relaxed());
/// ```
///
/// Notify additional listeners. In contrast to [`Event::notify()`], this method will notify `n`
/// *additional* listeners that were previously unnotified. This uses the [`additional`]
/// notification strategy. This is equivalent to calling [`Event::notify_additional()`].
///
/// [`additional`]: IntoNotification::additional
///
/// ```
/// use event_listener::{prelude::*, Event};
///
/// let event = Event::new();
///
/// // This notification gets lost because there are no listeners.
/// event.notify(1.additional());
///
/// let listener1 = event.listen();
/// let listener2 = event.listen();
/// let listener3 = event.listen();
///
/// // Notifies two listeners.
/// //
/// // Listener queueing is fair, which means `listener1` and `listener2`
/// // get notified here since they start listening before `listener3`.
/// event.notify(1.additional());
/// event.notify(1.additional());
/// ```
///
/// Notifies with the [`additional`] and [`relaxed`] strategies at the same time. This is
/// equivalent to calling [`Event::notify_additional_relaxed()`].
///
/// ```
/// use event_listener::{prelude::*, Event};
/// use std::sync::atomic::{self, Ordering};
///
/// let event = Event::new();
///
/// // This notification gets lost because there are no listeners.
/// event.notify(1.additional().relaxed());
///
/// let listener1 = event.listen();
/// let listener2 = event.listen();
/// let listener3 = event.listen();
///
/// // We should emit a fence manually when using relaxed notifications.
/// atomic::fence(Ordering::SeqCst);
///
/// // Notifies two listeners.
/// //
/// // Listener queueing is fair, which means `listener1` and `listener2`
/// // get notified here since they start listening before `listener3`.
/// event.notify(1.additional().relaxed());
/// event.notify(1.additional().relaxed());
/// ```
#[inline]
pub fn notify(&self, notify: impl IntoNotification<Tag = T>) -> usize {
let notify = notify.into_notification();
// Make sure the notification comes after whatever triggered it.
notify.fence(notify::Internal::new());
if let Some(inner) = self.try_inner() {
let limit = if notify.is_additional(Internal::new()) {
core::usize::MAX
} else {
notify.count(Internal::new())
};
// Notify if there is at least one unnotified listener and the number of notified
// listeners is less than `limit`.
if inner.needs_notification(limit) {
return inner.notify(notify);
}
}
0
}
/// Return a reference to the inner state if it has been initialized.
#[inline]
fn try_inner(&self) -> Option<&Inner<T>> {
let inner = self.inner.load(Ordering::Acquire);
unsafe { inner.as_ref() }
}
/// Returns a raw, initialized pointer to the inner state.
///
/// This returns a raw pointer instead of reference because `from_raw`
/// requires raw/mut provenance: <https://github.com/rust-lang/rust/pull/67339>.
fn inner(&self) -> *const Inner<T> {
let mut inner = self.inner.load(Ordering::Acquire);
// If this is the first use, initialize the state.
if inner.is_null() {
// Allocate the state on the heap.
let new = Arc::new(Inner::<T>::new());
// Convert the state to a raw pointer.
let new = Arc::into_raw(new) as *mut Inner<T>;
// Replace the null pointer with the new state pointer.
inner = self
.inner
.compare_exchange(inner, new, Ordering::AcqRel, Ordering::Acquire)
.unwrap_or_else(|x| x);
// Check if the old pointer value was indeed null.
if inner.is_null() {
// If yes, then use the new state pointer.
inner = new;
} else {
// If not, that means a concurrent operation has initialized the state.
// In that case, use the old pointer and deallocate the new one.
unsafe {
drop(Arc::from_raw(new));
}
}
}
inner
}
}
impl Event<()> {
/// Creates a new [`Event`].
///
/// # Examples
///
/// ```
/// use event_listener::Event;
///
/// let event = Event::new();
/// ```
#[inline]
pub const fn new() -> Self {
Self {
inner: AtomicPtr::new(ptr::null_mut()),
}
}
/// Notifies a number of active listeners without emitting a `SeqCst` fence.
///
/// The number is allowed to be zero or exceed the current number of listeners.
///
/// In contrast to [`Event::notify_additional()`], this method only makes sure *at least* `n`
/// listeners among the active ones are notified.
///
/// Unlike [`Event::notify()`], this method does not emit a `SeqCst` fence.
///
/// This method only works for untagged events. In other cases, it is recommended to instead
/// use [`Event::notify()`] like so:
///
/// ```
/// use event_listener::{prelude::*, Event};
/// let event = Event::new();
///
/// // Old way:
/// event.notify_relaxed(1);
///
/// // New way:
/// event.notify(1.relaxed());
/// ```
///
/// # Examples
///
/// ```
/// use event_listener::Event;
/// use std::sync::atomic::{self, Ordering};
///
/// let event = Event::new();
///
/// // This notification gets lost because there are no listeners.
/// event.notify_relaxed(1);
///
/// let listener1 = event.listen();
/// let listener2 = event.listen();
/// let listener3 = event.listen();
///
/// // We should emit a fence manually when using relaxed notifications.
/// atomic::fence(Ordering::SeqCst);
///
/// // Notifies two listeners.
/// //
/// // Listener queueing is fair, which means `listener1` and `listener2`
/// // get notified here since they start listening before `listener3`.
/// event.notify_relaxed(2);
/// ```
#[inline]
pub fn notify_relaxed(&self, n: usize) -> usize {
self.notify(n.relaxed())
}
/// Notifies a number of active and still unnotified listeners.
///
/// The number is allowed to be zero or exceed the current number of listeners.
///
/// In contrast to [`Event::notify()`], this method will notify `n` *additional* listeners that
/// were previously unnotified.
///
/// This method emits a `SeqCst` fence before notifying listeners.
///
/// This method only works for untagged events. In other cases, it is recommended to instead
/// use [`Event::notify()`] like so:
///
/// ```
/// use event_listener::{prelude::*, Event};
/// let event = Event::new();
///
/// // Old way:
/// event.notify_additional(1);
///
/// // New way:
/// event.notify(1.additional());
/// ```
///
/// # Examples
///
/// ```
/// use event_listener::Event;
///
/// let event = Event::new();
///
/// // This notification gets lost because there are no listeners.
/// event.notify_additional(1);
///
/// let listener1 = event.listen();
/// let listener2 = event.listen();
/// let listener3 = event.listen();
///
/// // Notifies two listeners.
/// //
/// // Listener queueing is fair, which means `listener1` and `listener2`
/// // get notified here since they start listening before `listener3`.
/// event.notify_additional(1);
/// event.notify_additional(1);
/// ```
#[inline]
pub fn notify_additional(&self, n: usize) -> usize {
self.notify(n.additional())
}
/// Notifies a number of active and still unnotified listeners without emitting a `SeqCst`
/// fence.
///
/// The number is allowed to be zero or exceed the current number of listeners.
///
/// In contrast to [`Event::notify()`], this method will notify `n` *additional* listeners that
/// were previously unnotified.
///
/// Unlike [`Event::notify_additional()`], this method does not emit a `SeqCst` fence.
///
/// This method only works for untagged events. In other cases, it is recommended to instead
/// use [`Event::notify()`] like so:
///
/// ```
/// use event_listener::{prelude::*, Event};
/// let event = Event::new();
///
/// // Old way:
/// event.notify_additional_relaxed(1);
///
/// // New way:
/// event.notify(1.additional().relaxed());
/// ```
///
/// # Examples
///
/// ```
/// use event_listener::Event;
/// use std::sync::atomic::{self, Ordering};
///
/// let event = Event::new();
///
/// // This notification gets lost because there are no listeners.
/// event.notify(1);
///
/// let listener1 = event.listen();
/// let listener2 = event.listen();
/// let listener3 = event.listen();
///
/// // We should emit a fence manually when using relaxed notifications.
/// atomic::fence(Ordering::SeqCst);
///
/// // Notifies two listeners.
/// //
/// // Listener queueing is fair, which means `listener1` and `listener2`
/// // get notified here since they start listening before `listener3`.
/// event.notify_additional_relaxed(1);
/// event.notify_additional_relaxed(1);
/// ```
#[inline]
pub fn notify_additional_relaxed(&self, n: usize) -> usize {
self.notify(n.additional().relaxed())
}
}
impl<T> Drop for Event<T> {
#[inline]
fn drop(&mut self) {
self.inner.with_mut(|&mut inner| {
// If the state pointer has been initialized, drop it.
if !inner.is_null() {
unsafe {
drop(Arc::from_raw(inner));
}
}
})
}
}
pin_project_lite::pin_project! {
/// A guard waiting for a notification from an [`Event`].
///
/// There are two ways for a listener to wait for a notification:
///
/// 1. In an asynchronous manner using `.await`.
/// 2. In a blocking manner by calling [`EventListener::wait()`] on it.
///
/// If a notified listener is dropped without receiving a notification, dropping will notify
/// another active listener. Whether one *additional* listener will be notified depends on what
/// kind of notification was delivered.
///
/// The listener is not registered into the linked list inside of the [`Event`] by default if
/// it is created via the `new()` method. It needs to be pinned first before being inserted
/// using the `listen()` method. After the listener has begun `listen`ing, the user can
/// `await` it like a future or call `wait()` to block the current thread until it is notified.
///
/// ## Examples
///
/// ```
/// use event_listener::{Event, EventListener};
/// use std::sync::{Arc, atomic::{AtomicBool, Ordering}};
/// use std::thread;
/// use std::time::Duration;
///
/// // Some flag to wait on.
/// let flag = Arc::new(AtomicBool::new(false));
///
/// // Create an event to wait on.
/// let event = Arc::new(Event::new());
///
/// thread::spawn({
/// let flag = flag.clone();
/// let event = event.clone();
/// move || {
/// thread::sleep(Duration::from_secs(2));
/// flag.store(true, Ordering::SeqCst);
///
/// // Wake up the listener.
/// event.notify_additional(std::usize::MAX);
/// }
/// });
///
/// let listener = EventListener::new();
///
/// // Make sure that the event listener is pinned before doing anything else.
/// //
/// // We pin the listener to the stack here, as it lets us avoid a heap allocation.
/// futures_lite::pin!(listener);
///
/// // Wait for the flag to become ready.
/// loop {
/// if flag.load(Ordering::Acquire) {
/// // We are done.
/// break;
/// }
///
/// if listener.is_listening() {
/// // We are inserted into the linked list and we can now wait.
/// listener.as_mut().wait();
/// } else {
/// // We need to insert ourselves into the list. Since this insertion is an atomic
/// // operation, we should check the flag again before waiting.
/// listener.as_mut().listen(&event);
/// }
/// }
/// ```
///
/// The above example is equivalent to the one provided in the crate level example. However,
/// it has some advantages. By directly creating the listener with `EventListener::new()`,
/// we have control over how the listener is handled in memory. We take advantage of this by
/// pinning the `listener` variable to the stack using the [`futures_lite::pin`] macro. In
/// contrast, `Event::listen` binds the listener to the heap.
///
/// However, this additional power comes with additional responsibility. By default, the
/// event listener is created in an "uninserted" state. This property means that any
/// notifications delivered to the [`Event`] by default will not wake up this listener.
/// Before any notifications can be received, the `listen()` method must be called on
/// `EventListener` to insert it into the list of listeners. After a `.await` or a `wait()`
/// call has completed, `listen()` must be called again if the user is still interested in
/// any events.
///
/// [`futures_lite::pin`]: https://docs.rs/futures-lite/latest/futures_lite/macro.pin.html
#[project(!Unpin)] // implied by Listener, but can generate better docs
pub struct EventListener<T = ()> {
#[pin]
listener: Listener<T, Arc<Inner<T>>>,
}
}
unsafe impl<T: Send> Send for EventListener<T> {}
unsafe impl<T: Send> Sync for EventListener<T> {}
impl<T> core::panic::UnwindSafe for EventListener<T> {}
impl<T> core::panic::RefUnwindSafe for EventListener<T> {}
impl<T> Default for EventListener<T> {
fn default() -> Self {
Self::new()
}
}
impl<T> fmt::Debug for EventListener<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("EventListener")
.field("listening", &self.is_listening())
.finish()
}
}
impl<T> EventListener<T> {
/// Create a new `EventListener` that will wait for a notification from the given [`Event`].
///
/// This function does not register the `EventListener` into the linked list of listeners
/// contained within the [`Event`]. Make sure to call `listen` before `await`ing on
/// this future or calling `wait()`.
///
/// ## Examples
///
/// ```
/// use event_listener::{Event, EventListener};
///
/// let event = Event::new();
/// let listener = EventListener::new();
///
/// // Make sure that the listener is pinned and listening before doing anything else.
/// let mut listener = Box::pin(listener);
/// listener.as_mut().listen(&event);
/// ```
pub fn new() -> Self {
Self {
listener: Listener {
event: None,
listener: None,
},
}
}
/// Register this listener into the given [`Event`].
///
/// This method can only be called after the listener has been pinned, and must be called before
/// the listener is polled.
///
/// Notifications that exist when this function is called will be discarded.
pub fn listen(mut self: Pin<&mut Self>, event: &Event<T>) {
let inner = {
let inner = event.inner();
unsafe { Arc::clone(&ManuallyDrop::new(Arc::from_raw(inner))) }
};
let ListenerProject {
event,
mut listener,
} = self.as_mut().project().listener.project();
// If an event is already registered, make sure to remove it.
if let Some(current_event) = event.as_ref() {
current_event.remove(listener.as_mut(), false);
}
let inner = event.insert(inner);
inner.insert(listener);
// Make sure the listener is registered before whatever happens next.
notify::full_fence();
}
/// Tell if this [`EventListener`] is currently listening for a notification.
///
/// # Examples
///
/// ```
/// use event_listener::{Event, EventListener};
///
/// let event = Event::new();
/// let mut listener = Box::pin(EventListener::new());
///
/// // The listener starts off not listening.
/// assert!(!listener.is_listening());
///
/// // After listen() is called, the listener is listening.
/// listener.as_mut().listen(&event);
/// assert!(listener.is_listening());
///
/// // Once the future is notified, the listener is no longer listening.
/// event.notify(1);
/// listener.as_mut().wait();
/// assert!(!listener.is_listening());
/// ```
pub fn is_listening(&self) -> bool {
self.listener.listener.is_some()
}
/// Blocks until a notification is received.
///
/// # Examples
///
/// ```
/// use event_listener::Event;
///
/// let event = Event::new();
/// let mut listener = event.listen();
///
/// // Notify `listener`.
/// event.notify(1);
///
/// // Receive the notification.
/// listener.as_mut().wait();
/// ```
#[cfg(all(feature = "std", not(target_family = "wasm")))]
pub fn wait(self: Pin<&mut Self>) -> T {
self.listener().wait_internal(None).unwrap()
}
/// Blocks until a notification is received or a timeout is reached.
///
/// Returns `true` if a notification was received.
///
/// # Examples
///
/// ```
/// use std::time::Duration;
/// use event_listener::Event;
///
/// let event = Event::new();
/// let mut listener = event.listen();
///
/// // There are no notification so this times out.
/// assert!(listener.as_mut().wait_timeout(Duration::from_secs(1)).is_none());
/// ```
#[cfg(all(feature = "std", not(target_family = "wasm")))]
pub fn wait_timeout(self: Pin<&mut Self>, timeout: Duration) -> Option<T> {
self.listener()
.wait_internal(Instant::now().checked_add(timeout))
}
/// Blocks until a notification is received or a deadline is reached.
///
/// Returns `true` if a notification was received.
///
/// # Examples
///
/// ```
/// use std::time::{Duration, Instant};
/// use event_listener::Event;
///
/// let event = Event::new();
/// let mut listener = event.listen();
///
/// // There are no notification so this times out.
/// assert!(listener.as_mut().wait_deadline(Instant::now() + Duration::from_secs(1)).is_none());
/// ```
#[cfg(all(feature = "std", not(target_family = "wasm")))]
pub fn wait_deadline(self: Pin<&mut Self>, deadline: Instant) -> Option<T> {
self.listener().wait_internal(Some(deadline))
}
/// Drops this listener and discards its notification (if any) without notifying another
/// active listener.
///
/// Returns `true` if a notification was discarded.
///
/// # Examples
/// ```
/// use event_listener::Event;
///
/// let event = Event::new();
/// let mut listener1 = event.listen();
/// let mut listener2 = event.listen();
///
/// event.notify(1);
///
/// assert!(listener1.as_mut().discard());
/// assert!(!listener2.as_mut().discard());
/// ```
pub fn discard(self: Pin<&mut Self>) -> bool {
self.project().listener.discard()
}
/// Returns `true` if this listener listens to the given `Event`.
///
/// # Examples
///
/// ```
/// use event_listener::Event;
///
/// let event = Event::new();
/// let listener = event.listen();
///
/// assert!(listener.listens_to(&event));
/// ```
#[inline]
pub fn listens_to(&self, event: &Event<T>) -> bool {
if let Some(inner) = &self.listener.event {
return ptr::eq::<Inner<T>>(&**inner, event.inner.load(Ordering::Acquire));
}
false
}
/// Returns `true` if both listeners listen to the same `Event`.
///
/// # Examples
///
/// ```
/// use event_listener::Event;
///
/// let event = Event::new();
/// let listener1 = event.listen();
/// let listener2 = event.listen();
///
/// assert!(listener1.same_event(&listener2));
/// ```
pub fn same_event(&self, other: &EventListener<T>) -> bool {
if let (Some(inner1), Some(inner2)) = (self.inner(), other.inner()) {
return ptr::eq::<Inner<T>>(&**inner1, &**inner2);
}
false
}
fn listener(self: Pin<&mut Self>) -> Pin<&mut Listener<T, Arc<Inner<T>>>> {
self.project().listener
}
fn inner(&self) -> Option<&Arc<Inner<T>>> {
self.listener.event.as_ref()
}
}
impl<T> Future for EventListener<T> {
type Output = T;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
self.listener().poll_internal(cx)
}
}
pin_project_lite::pin_project! {
#[project(!Unpin)]
#[project = ListenerProject]
struct Listener<T, B: Borrow<Inner<T>>>
where
B: Unpin,
{
// The reference to the original event.
event: Option<B>,
// The inner state of the listener.
//
// This is only ever `None` during initialization. After `listen()` has completed, this
// should be `Some`.
#[pin]
listener: Option<sys::Listener<T>>,
}
impl<T, B: Borrow<Inner<T>>> PinnedDrop for Listener<T, B>
where
B: Unpin,
{
fn drop(mut this: Pin<&mut Self>) {
// If we're being dropped, we need to remove ourself from the list.
let this = this.project();
if let Some(inner) = this.event {
(*inner).borrow().remove(this.listener, true);
}
}
}
}
unsafe impl<T: Send, B: Borrow<Inner<T>> + Unpin + Send> Send for Listener<T, B> {}
unsafe impl<T: Send, B: Borrow<Inner<T>> + Unpin + Sync> Sync for Listener<T, B> {}
impl<T, B: Borrow<Inner<T>> + Unpin> Listener<T, B> {
/// Wait until the provided deadline.
#[cfg(all(feature = "std", not(target_family = "wasm")))]
fn wait_internal(mut self: Pin<&mut Self>, deadline: Option<Instant>) -> Option<T> {
use std::cell::RefCell;
std::thread_local! {
/// Cached thread-local parker/unparker pair.
static PARKER: RefCell<Option<(Parker, Task)>> = RefCell::new(None);
}
// Try to borrow the thread-local parker/unparker pair.
PARKER
.try_with({
let this = self.as_mut();
|parker| {
let mut pair = parker
.try_borrow_mut()
.expect("Shouldn't be able to borrow parker reentrantly");
let (parker, unparker) = pair.get_or_insert_with(|| {
let (parker, unparker) = parking::pair();
(parker, Task::Unparker(unparker))
});
this.wait_with_parker(deadline, parker, unparker.as_task_ref())
}
})
.unwrap_or_else(|_| {
// If the pair isn't accessible, we may be being called in a destructor.
// Just create a new pair.
let (parker, unparker) = parking::pair();
self.wait_with_parker(deadline, &parker, TaskRef::Unparker(&unparker))
})
}
/// Wait until the provided deadline using the specified parker/unparker pair.
#[cfg(all(feature = "std", not(target_family = "wasm")))]
fn wait_with_parker(
self: Pin<&mut Self>,
deadline: Option<Instant>,
parker: &Parker,
unparker: TaskRef<'_>,
) -> Option<T> {
let mut this = self.project();
let inner = (*this
.event
.as_ref()
.expect("must listen() on event listener before waiting"))
.borrow();
// Set the listener's state to `Task`.
if let Some(tag) = inner.register(this.listener.as_mut(), unparker).notified() {
// We were already notified, so we don't need to park.
return Some(tag);
}
// Wait until a notification is received or the timeout is reached.
loop {
match deadline {
None => parker.park(),
Some(deadline) => {
// Make sure we're not timed out already.
let now = Instant::now();
if now >= deadline {
// Remove our entry and check if we were notified.
return inner
.remove(this.listener, false)
.expect("We never removed ourself from the list")
.notified();
}
parker.park_deadline(deadline);
}
}
// See if we were notified.
if let Some(tag) = inner.register(this.listener.as_mut(), unparker).notified() {
return Some(tag);
}
}
}
/// Drops this listener and discards its notification (if any) without notifying another
/// active listener.
fn discard(self: Pin<&mut Self>) -> bool {
let this = self.project();
if let Some(inner) = this.event.as_ref() {
(*inner)
.borrow()
.remove(this.listener, false)
.map_or(false, |state| state.is_notified())
} else {
false
}
}
/// Poll this listener for a notification.
fn poll_internal(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<T> {
let mut this = self.project();
let inner = match &this.event {
Some(inner) => (*inner).borrow(),
None => panic!(""),
};
// Try to register the listener.
match inner
.register(this.listener.as_mut(), TaskRef::Waker(cx.waker()))
.notified()
{
Some(tag) => {
// We were already notified, so we don't need to park.
Poll::Ready(tag)
}
None => {
// We're now waiting for a notification.
Poll::Pending
}
}
}
}
/// The state of a listener.
#[derive(PartialEq)]
enum State<T> {
/// The listener was just created.
Created,
/// The listener has received a notification.
///
/// The `bool` is `true` if this was an "additional" notification.
Notified {
/// Whether or not this is an "additional" notification.
additional: bool,
/// The tag associated with the notification.
tag: T,
},
/// A task is waiting for a notification.
Task(Task),
/// Empty hole used to replace a notified listener.
NotifiedTaken,
}
impl<T> fmt::Debug for State<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Created => f.write_str("Created"),
Self::Notified { additional, .. } => f
.debug_struct("Notified")
.field("additional", additional)
.finish(),
Self::Task(_) => f.write_str("Task(_)"),
Self::NotifiedTaken => f.write_str("NotifiedTaken"),
}
}
}
impl<T> State<T> {
fn is_notified(&self) -> bool {
matches!(self, Self::Notified { .. } | Self::NotifiedTaken)
}
/// If this state was notified, return the tag associated with the notification.
#[allow(unused)]
fn notified(self) -> Option<T> {
match self {
Self::Notified { tag, .. } => Some(tag),
Self::NotifiedTaken => panic!("listener was already notified but taken"),
_ => None,
}
}
}
/// The result of registering a listener.
#[derive(Debug, PartialEq)]
enum RegisterResult<T> {
/// The listener was already notified.
Notified(T),
/// The listener has been registered.
Registered,
/// The listener was never inserted into the list.
NeverInserted,
}
impl<T> RegisterResult<T> {
/// Whether or not the listener was notified.
///
/// Panics if the listener was never inserted into the list.
fn notified(self) -> Option<T> {
match self {
Self::Notified(tag) => Some(tag),
Self::Registered => None,
Self::NeverInserted => panic!("listener was never inserted into the list"),
}
}
}
/// A task that can be woken up.
#[derive(Debug, Clone)]
enum Task {
/// A waker that wakes up a future.
Waker(Waker),
/// An unparker that wakes up a thread.
#[cfg(all(feature = "std", not(target_family = "wasm")))]
Unparker(Unparker),
}
impl Task {
fn as_task_ref(&self) -> TaskRef<'_> {
match self {
Self::Waker(waker) => TaskRef::Waker(waker),
#[cfg(all(feature = "std", not(target_family = "wasm")))]
Self::Unparker(unparker) => TaskRef::Unparker(unparker),
}
}
fn wake(self) {
match self {
Self::Waker(waker) => waker.wake(),
#[cfg(all(feature = "std", not(target_family = "wasm")))]
Self::Unparker(unparker) => {
unparker.unpark();
}
}
}
}
impl PartialEq for Task {
fn eq(&self, other: &Self) -> bool {
self.as_task_ref().will_wake(other.as_task_ref())
}
}
/// A reference to a task.
#[derive(Clone, Copy)]
enum TaskRef<'a> {
/// A waker that wakes up a future.
Waker(&'a Waker),
/// An unparker that wakes up a thread.
#[cfg(all(feature = "std", not(target_family = "wasm")))]
Unparker(&'a Unparker),
}
impl TaskRef<'_> {
/// Tells if this task will wake up the other task.
#[allow(unreachable_patterns)]
fn will_wake(self, other: Self) -> bool {
match (self, other) {
(Self::Waker(a), Self::Waker(b)) => a.will_wake(b),
#[cfg(all(feature = "std", not(target_family = "wasm")))]
(Self::Unparker(_), Self::Unparker(_)) => {
// TODO: Use unreleased will_unpark API.
false
}
_ => false,
}
}
/// Converts this task reference to a task by cloning.
fn into_task(self) -> Task {
match self {
Self::Waker(waker) => Task::Waker(waker.clone()),
#[cfg(all(feature = "std", not(target_family = "wasm")))]
Self::Unparker(unparker) => Task::Unparker(unparker.clone()),
}
}
}
/// Synchronization primitive implementation.
mod sync {
pub(super) use core::cell;
#[cfg(not(feature = "portable-atomic"))]
pub(super) use alloc::sync::Arc;
#[cfg(not(feature = "portable-atomic"))]
pub(super) use core::sync::atomic;
#[cfg(feature = "portable-atomic")]
pub(super) use portable_atomic_crate as atomic;
#[cfg(feature = "portable-atomic")]
pub(super) use portable_atomic_util::Arc;
#[cfg(feature = "std")]
pub(super) use std::sync::{Mutex, MutexGuard};
pub(super) trait WithMut {
type Output;
fn with_mut<F, R>(&mut self, f: F) -> R
where
F: FnOnce(&mut Self::Output) -> R;
}
impl<T> WithMut for atomic::AtomicPtr<T> {
type Output = *mut T;
#[inline]
fn with_mut<F, R>(&mut self, f: F) -> R
where
F: FnOnce(&mut Self::Output) -> R,
{
f(self.get_mut())
}
}
}
fn __test_send_and_sync() {
fn _assert_send<T: Send>() {}
fn _assert_sync<T: Sync>() {}
_assert_send::<Event<()>>();
_assert_sync::<Event<()>>();
_assert_send::<EventListener<()>>();
_assert_sync::<EventListener<()>>();
}