exonum_crypto/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
// Copyright 2020 The Exonum Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Cryptography related types, constants, traits and functions. The functions
//! in this library are used for key generation, hashing, signing and signature
//! verification.
//!
//! The Crypto library makes it possible to potentially change the type of
//! cryptography applied in the system and add abstractions best
//! suited for Exonum.
#![warn(
missing_debug_implementations,
missing_docs,
unsafe_code,
bare_trait_objects
)]
#![warn(clippy::pedantic, clippy::nursery)]
#![allow(
// Next `cast_*` lints don't give alternatives.
clippy::cast_possible_wrap, clippy::cast_possible_truncation, clippy::cast_sign_loss,
// Next lints produce too much noise/false positives.
clippy::module_name_repetitions, clippy::similar_names, clippy::must_use_candidate,
clippy::pub_enum_variant_names,
// '... may panic' lints.
clippy::indexing_slicing,
// Too much work to fix.
clippy::missing_errors_doc, clippy::missing_const_for_fn
)]
#[macro_use]
extern crate serde_derive; // Required for Protobuf.
#[doc(inline)]
pub use self::crypto_impl::{
HASH_SIZE, PUBLIC_KEY_LENGTH, SECRET_KEY_LENGTH, SEED_LENGTH, SIGNATURE_LENGTH,
};
#[cfg(feature = "sodiumoxide-crypto")]
pub use self::crypto_lib::sodiumoxide::x25519;
#[cfg(feature = "with-protobuf")]
#[doc(hidden)]
pub mod proto;
use hex::{encode as encode_hex, FromHex, FromHexError, ToHex};
use serde::{
de::{self, Deserialize, Deserializer, Visitor},
Serialize, Serializer,
};
use std::{
default::Default,
fmt,
ops::{Index, Range, RangeFrom, RangeFull, RangeTo},
};
// A way to set an active cryptographic backend is to export it as `crypto_impl`.
#[cfg(feature = "sodiumoxide-crypto")]
use self::crypto_lib::sodiumoxide as crypto_impl;
#[macro_use]
mod macros;
pub(crate) mod crypto_lib;
/// The size to crop the string in debug messages.
const BYTES_IN_DEBUG: usize = 4;
fn write_short_hex(f: &mut fmt::Formatter<'_>, slice: &[u8]) -> fmt::Result {
for byte in slice.iter().take(BYTES_IN_DEBUG) {
write!(f, "{:02x}", byte)?;
}
if slice.len() > BYTES_IN_DEBUG {
write!(f, "...")?;
}
Ok(())
}
/// Signs a slice of bytes using the signer's secret key and returns the
/// resulting `Signature`.
///
/// # Examples
///
/// The example below generates a pair of secret and public keys, indicates
/// certain data, signs the data using the secret key and with the help of
/// the public key verifies that the data have been signed with the corresponding
/// secret key.
///
/// ```
/// # exonum_crypto::init();
/// let (public_key, secret_key) = exonum_crypto::gen_keypair();
/// let data = [1, 2, 3];
/// let signature = exonum_crypto::sign(&data, &secret_key);
/// assert!(exonum_crypto::verify(&signature, &data, &public_key));
/// ```
pub fn sign(data: &[u8], secret_key: &SecretKey) -> Signature {
let impl_signature = crypto_impl::sign(data, &secret_key.0);
Signature(impl_signature)
}
/// Computes a secret key and a corresponding public key from a `Seed`.
///
/// # Examples
///
/// The example below generates a keypair that depends on the indicated seed.
/// Indicating the same seed value always results in the same keypair.
///
/// ```
/// use exonum_crypto::{SEED_LENGTH, Seed};
///
/// # exonum_crypto::init();
/// let (public_key, secret_key) = exonum_crypto::gen_keypair_from_seed(&Seed::new([1; SEED_LENGTH]));
/// ```
pub fn gen_keypair_from_seed(seed: &Seed) -> (PublicKey, SecretKey) {
let (impl_pub_key, impl_secret_key) = crypto_impl::gen_keypair_from_seed(&seed.0);
(PublicKey(impl_pub_key), SecretKey(impl_secret_key))
}
/// Generates a secret key and a corresponding public key using a cryptographically secure
/// pseudo-random number generator.
///
/// # Examples
///
/// The example below generates a unique keypair.
///
/// ```
/// # exonum_crypto::init();
/// let (public_key, secret_key) = exonum_crypto::gen_keypair();
/// ```
pub fn gen_keypair() -> (PublicKey, SecretKey) {
let (pubkey, secret_key) = crypto_impl::gen_keypair();
(PublicKey(pubkey), SecretKey(secret_key))
}
/// Verifies that `data` is signed with a secret key corresponding to the
/// given public key.
///
/// # Examples
///
/// The example below generates a pair of secret and public keys, indicates
/// certain data, signs the data using the secret key and with the help of the public key
/// verifies that the data have been signed with the corresponding secret key.
///
/// ```
/// # exonum_crypto::init();
/// let (public_key, secret_key) = exonum_crypto::gen_keypair();
/// let data = [1, 2, 3];
/// let signature = exonum_crypto::sign(&data, &secret_key);
/// assert!(exonum_crypto::verify(&signature, &data, &public_key));
/// ```
pub fn verify(sig: &Signature, data: &[u8], pubkey: &PublicKey) -> bool {
crypto_impl::verify(&sig.0, data, &pubkey.0)
}
/// Calculates a hash of a bytes slice.
///
/// Type of a hash depends on a chosen crypto backend (via `...-crypto` cargo feature).
///
/// # Examples
///
/// The example below calculates the hash of the indicated data.
///
/// ```
/// # exonum_crypto::init();
/// let data = [1, 2, 3];
/// let hash = exonum_crypto::hash(&data);
/// ```
pub fn hash(data: &[u8]) -> Hash {
let dig = crypto_impl::hash(data);
Hash(dig)
}
/// Initializes the cryptographic backend.
///
/// # Panics
///
/// Panics if backend initialization is failed.
///
/// # Examples
///
/// ```
/// exonum_crypto::init();
/// ```
pub fn init() {
if !crypto_impl::init() {
panic!("Cryptographic library initialization failed.");
}
}
/// This structure provides a possibility to calculate a hash digest
/// for a stream of data. Unlike the
/// [`Hash` structure](struct.Hash.html),
/// the given structure lets the code process several data chunks without
/// the need to copy them into a single buffer.
///
/// # Examples
///
/// The example below indicates the data the code is working with; runs the
/// system hash update as many times as required to process all the data chunks
/// and calculates the resulting hash of the system.
///
/// ```rust
/// use exonum_crypto::HashStream;
///
/// let data: Vec<[u8; 5]> = vec![[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]];
/// let mut hash_stream = HashStream::new();
/// for chunk in data {
/// hash_stream = hash_stream.update(&chunk);
/// }
/// let _ = hash_stream.hash();
/// ```
#[derive(Debug, Default)]
pub struct HashStream(crypto_impl::HashState);
impl HashStream {
/// Creates a new instance of `HashStream`.
pub fn new() -> Self {
Self(crypto_impl::HashState::init())
}
/// Processes a chunk of stream and returns a `HashStream` with the updated internal state.
pub fn update(mut self, chunk: &[u8]) -> Self {
self.0.update(chunk);
self
}
/// Returns the resulting hash of the system calculated upon the commit
/// of currently supplied data.
pub fn hash(self) -> Hash {
let dig = self.0.finalize();
Hash(dig)
}
}
/// This structure provides a possibility to create and/or verify
/// digital signatures for a stream of data. If the data are split into several
/// chunks, the indicated chunks are added to the system and when adding is
/// complete, the data is signed.
///
/// # Examples
///
/// The example below adds several data chunks to the system, generates a pair
/// of random public and secret keys, signs the data and verifies the signature.
///
/// ```rust
/// use exonum_crypto::{SignStream, gen_keypair};
///
/// let data: Vec<[u8; 5]> = vec![[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]];
/// let (public_key, secret_key) = gen_keypair();
/// let mut create_stream = SignStream::new();
/// let mut verify_stream = SignStream::new();
/// for chunk in data {
/// create_stream = create_stream.update(&chunk);
/// verify_stream = verify_stream.update(&chunk);
/// }
/// let file_sign = create_stream.sign(&secret_key);
/// assert!(verify_stream.verify(&file_sign, &public_key));
/// ```
#[derive(Debug, Default)]
pub struct SignStream(crypto_impl::SignState);
impl SignStream {
/// Creates a new instance of `SignStream`.
///
/// # Examples
///
/// ```
/// use exonum_crypto::SignStream;
///
/// let stream = SignStream::new();
/// ```
pub fn new() -> Self {
Self(crypto_impl::SignState::init())
}
/// Adds a new `chunk` to the message that will eventually be signed and/or verified.
///
/// # Examples
///
/// ```
/// use exonum_crypto::SignStream;
///
/// let mut stream = SignStream::new();
///
/// let data = &[[1, 2, 3], [4, 5, 6], [7, 8, 9]];
/// for chunk in data.iter() {
/// stream = stream.update(chunk);
/// }
/// ```
pub fn update(mut self, chunk: &[u8]) -> Self {
self.0.update(chunk);
self
}
/// Computes and returns a signature for the previously supplied message
/// using the given `secret_key`.
///
/// # Examples
///
/// ```
/// use exonum_crypto::{SignStream, gen_keypair};
///
/// let mut stream = SignStream::new();
///
/// let data = &[[1, 2, 3], [4, 5, 6], [7, 8, 9]];
/// for chunk in data.iter() {
/// stream = stream.update(chunk);
/// }
///
/// let (public_key, secret_key) = gen_keypair();
/// let signature = stream.sign(&secret_key);
/// ```
pub fn sign(&mut self, secret_key: &SecretKey) -> Signature {
Signature(self.0.finalize(&secret_key.0))
}
/// Verifies that `sig` is a valid signature for the previously supplied message
/// using the given `public_key`.
///
/// # Examples
///
/// ```
/// use exonum_crypto::{SignStream, gen_keypair};
///
/// let mut stream = SignStream::new();
/// let mut verify_stream = SignStream::new();
///
/// let data = &[[1, 2, 3], [4, 5, 6], [7, 8, 9]];
/// for chunk in data.iter() {
/// stream = stream.update(chunk);
/// verify_stream = verify_stream.update(chunk);
/// }
///
/// let (public_key, secret_key) = gen_keypair();
/// let signature = stream.sign(&secret_key);
/// assert!(verify_stream.verify(&signature, &public_key));
/// ```
pub fn verify(&mut self, sig: &Signature, public_key: &PublicKey) -> bool {
self.0.verify(&sig.0, &public_key.0)
}
}
implement_public_crypto_wrapper! {
/// Ed25519 public key used to verify digital signatures.
///
/// In public-key cryptography, the system uses a a mathematically related pair
/// of keys: a public key, which is openly distributed, and a secret key,
/// which should remain confidential. For more information, refer to
/// [Public-key cryptography](https://en.wikipedia.org/wiki/Public-key_cryptography).
///
/// Ed25519 is a signature system that ensures fast signing and key generation,
/// as well as security and collision resilience.
///
/// # Examples
///
/// In the example below, the function generates a pair of random public and
/// secret keys.
///
/// ```
/// # exonum_crypto::init();
/// let (public_key, _) = exonum_crypto::gen_keypair();
/// ```
struct PublicKey, PUBLIC_KEY_LENGTH
}
implement_private_crypto_wrapper! {
/// Ed25519 secret key used to create digital signatures over messages.
///
/// In public-key cryptography, the system uses a a mathematically related pair
/// of keys: a public key, which is openly distributed, and a secret key,
/// which should remain confidential. For more information, refer to
/// [Public-key cryptography](https://en.wikipedia.org/wiki/Public-key_cryptography).
///
/// Ed25519 is a signature system that ensures fast signing and key generation,
/// as well as security and collision resilience.
///
/// # Examples
///
/// In the example below, the function generates a pair of random public and
/// secret keys.
///
/// ```
/// # exonum_crypto::init();
/// let (_, secret_key) = exonum_crypto::gen_keypair();
/// ```
struct SecretKey, SECRET_KEY_LENGTH
}
implement_public_crypto_wrapper! {
/// The result of applying the SHA-256 hash function to data.
///
/// This function splits the input data into blocks and runs each block
/// through a cycle of 64 iterations. The result of the function is a hash
/// 256 bits or 32 bytes in length.
///
/// # Examples
///
/// The example below generates the hash of the indicated data.
///
/// ```
/// use exonum_crypto::Hash;
///
/// let data = [1, 2, 3];
/// let hash_from_data = exonum_crypto::hash(&data);
/// let default_hash = Hash::default();
/// ```
struct Hash, HASH_SIZE
}
implement_public_crypto_wrapper! {
/// Ed25519 digital signature. This structure creates a signature over data
/// using a secret key. Later it is possible to verify, using the corresponding
/// public key, that the data have indeed been signed with that secret key.
///
/// Ed25519 is a signature system that ensures fast signing and key generation,
/// as well as security and collision resilience.
///
/// # Examples
///
/// The example below generates a pair of random public and secret keys,
/// adds certain data, signs the data using the secret key and verifies
/// that the data have been signed with that secret key.
///
/// ```
/// # exonum_crypto::init();
/// let (public_key, secret_key) = exonum_crypto::gen_keypair();
/// let data = [1, 2, 3];
/// let signature = exonum_crypto::sign(&data, &secret_key);
/// assert!(exonum_crypto::verify(&signature, &data, &public_key));
/// ```
struct Signature, SIGNATURE_LENGTH
}
implement_private_crypto_wrapper! {
/// Ed25519 seed representing a succession of bytes that can be used for
/// deterministic keypair generation. If the same seed is indicated in the
/// generator multiple times, the generated keys will be the same each time.
///
/// Note that this is not the seed added to Exonum transactions for additional
/// security, this is a separate entity. This structure is useful for testing,
/// to receive repeatable results. The seed in this structure is either set
/// manually or selected using the methods below.
///
/// # Examples
///
/// The example below generates a pair of public and secret keys taking
/// into account the selected seed. The same seed will always lead to
/// generation of the same keypair.
///
/// ```
/// use exonum_crypto::{SEED_LENGTH, Seed};
///
/// # exonum_crypto::init();
/// let (public_key, secret_key) = exonum_crypto::gen_keypair_from_seed(&Seed::new([1; SEED_LENGTH]));
/// ```
struct Seed, SEED_LENGTH
}
implement_serde! {Hash}
implement_serde! {PublicKey}
implement_serde! {SecretKey}
implement_serde! {Seed}
implement_serde! {Signature}
implement_index_traits! {Hash}
implement_index_traits! {PublicKey}
implement_index_traits! {SecretKey}
implement_index_traits! {Seed}
implement_index_traits! {Signature}
/// Pair of matching secret and public keys.
///
/// Prefer using this struct to `(PublicKey, SecretKey)`, since it asserts that public
/// and secret keys necessarily match.
#[derive(Debug, Clone, Eq, PartialEq, Serialize, Deserialize)]
pub struct KeyPair {
public_key: PublicKey,
secret_key: SecretKey,
}
impl KeyPair {
/// Creates a keypair from the provided keys, checking that they correspond to each other.
///
/// # Panics
///
/// - If the keys do not match.
pub fn from_keys(public_key: PublicKey, secret_key: SecretKey) -> Self {
assert!(
verify_keys_match(&public_key, &secret_key),
"Public key does not match the secret key."
);
Self {
public_key,
secret_key,
}
}
/// Generates a random keypair using the random number generator provided by the crypto backend.
pub fn random() -> Self {
let (public_key, secret_key) = gen_keypair();
Self {
public_key,
secret_key,
}
}
/// Generates a keypair from the provided seed.
pub fn from_seed(seed: &Seed) -> Self {
let (public_key, secret_key) = gen_keypair_from_seed(seed);
Self {
public_key,
secret_key,
}
}
/// Gets the public key.
pub fn public_key(&self) -> PublicKey {
self.public_key
}
/// Gets a reference to the secret key.
pub fn secret_key(&self) -> &SecretKey {
&self.secret_key
}
}
impl From<(PublicKey, SecretKey)> for KeyPair {
fn from(keys: (PublicKey, SecretKey)) -> Self {
Self::from_keys(keys.0, keys.1)
}
}
fn verify_keys_match(public_key: &PublicKey, secret_key: &SecretKey) -> bool {
crypto_impl::verify_keys_match(&public_key.0, &secret_key.0)
}
#[cfg(test)]
mod tests {
use super::*;
use serde::de::DeserializeOwned;
use hex::FromHex;
#[test]
fn to_from_hex_hash() {
let original = hash(&[]);
let from_hex = Hash::from_hex(original.to_hex()).unwrap();
assert_eq!(original, from_hex);
}
#[test]
fn zero_hash() {
let hash = Hash::zero();
assert_eq!(hash.as_ref(), [0; HASH_SIZE]);
}
#[test]
fn to_from_hex_keys() {
let (p, s) = gen_keypair();
let ph = PublicKey::from_hex(p.to_hex()).unwrap();
assert_eq!(p, ph);
let sh = SecretKey::from_hex(s.to_hex()).unwrap();
assert_eq!(s, sh);
}
#[test]
fn serialize_deserialize_hash() {
assert_serialize_deserialize(&Hash::new([207; HASH_SIZE]));
}
#[test]
fn serialize_deserialize_public_key() {
assert_serialize_deserialize(&PublicKey::new([208; PUBLIC_KEY_LENGTH]));
}
#[test]
fn serialize_deserialize_signature() {
assert_serialize_deserialize(&Signature::new([209; SIGNATURE_LENGTH]));
}
#[test]
fn serialize_deserialize_seed() {
assert_serialize_deserialize(&Seed::new([210; SEED_LENGTH]));
}
#[test]
fn serialize_deserialize_secret_key() {
assert_serialize_deserialize(&SecretKey::new([211; SECRET_KEY_LENGTH]));
}
#[test]
fn debug_format() {
// Check zero padding.
let hash = Hash::new([1; HASH_SIZE]);
assert_eq!(format!("{:?}", &hash), "Hash(01010101...)");
let pk = PublicKey::new([15; PUBLIC_KEY_LENGTH]);
assert_eq!(format!("{:?}", &pk), "PublicKey(0f0f0f0f...)");
let sk = SecretKey::new([8; SECRET_KEY_LENGTH]);
assert_eq!(format!("{:?}", &sk), "SecretKey(08080808...)");
let signature = Signature::new([10; SIGNATURE_LENGTH]);
assert_eq!(format!("{:?}", &signature), "Signature(0a0a0a0a...)");
let seed = Seed::new([4; SEED_LENGTH]);
assert_eq!(format!("{:?}", &seed), "Seed(04040404...)");
// Check no padding.
let hash = Hash::new([128; HASH_SIZE]);
assert_eq!(format!("{:?}", &hash), "Hash(80808080...)");
let sk = SecretKey::new([255; SECRET_KEY_LENGTH]);
assert_eq!(format!("{:?}", &sk), "SecretKey(ffffffff...)");
}
// Note that only public values have Display impl.
#[test]
fn display_format() {
// Check zero padding.
let hash = Hash::new([1; HASH_SIZE]);
assert_eq!(format!("{}", &hash), "01010101...");
let pk = PublicKey::new([15; PUBLIC_KEY_LENGTH]);
assert_eq!(format!("{}", &pk), "0f0f0f0f...");
let signature = Signature::new([10; SIGNATURE_LENGTH]);
assert_eq!(format!("{}", &signature), "0a0a0a0a...");
// Check no padding.
let hash = Hash::new([128; HASH_SIZE]);
assert_eq!(format!("{}", &hash), "80808080...");
}
#[test]
fn hash_streaming_zero() {
let h1 = hash(&[]);
let state = HashStream::new();
let h2 = state.update(&[]).hash();
assert_eq!(h1, h2);
}
#[test]
fn hash_streaming_chunks() {
let data: [u8; 10] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0];
let h1 = hash(&data);
let state = HashStream::new();
let h2 = state.update(&data[..5]).update(&data[5..]).hash();
assert_eq!(h1, h2);
}
#[test]
fn sign_streaming_zero() {
let (pk, sk) = gen_keypair();
let mut creation_stream = SignStream::new().update(&[]);
let sig = creation_stream.sign(&sk);
let mut verified_stream = SignStream::new().update(&[]);
assert!(verified_stream.verify(&sig, &pk));
}
#[test]
fn sign_streaming_chunks() {
let data: [u8; 10] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0];
let (pk, sk) = gen_keypair();
let mut creation_stream = SignStream::new().update(&data[..5]).update(&data[5..]);
let sig = creation_stream.sign(&sk);
let mut verified_stream = SignStream::new().update(&data[..5]).update(&data[5..]);
assert!(verified_stream.verify(&sig, &pk));
}
fn assert_serialize_deserialize<T>(original_value: &T)
where
T: Serialize + DeserializeOwned + PartialEq + fmt::Debug,
{
let json = serde_json::to_string(original_value).unwrap();
let deserialized_value: T = serde_json::from_str(&json).unwrap();
assert_eq!(*original_value, deserialized_value);
}
#[test]
fn valid_keypair() {
let (pk, sk) = gen_keypair();
let _ = KeyPair::from_keys(pk, sk);
}
#[test]
#[should_panic]
fn not_valid_keypair() {
let (pk, _) = gen_keypair();
let (_, sk) = gen_keypair();
let _ = KeyPair::from_keys(pk, sk);
}
}