exonum_proto/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
// Copyright 2020 The Exonum Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Protobuf generated structs and traits for conversion.
//!
//! The central part of this module is [`ProtobufConvert`](./trait.ProtobufConvert.html).
//! The main purpose of this trait is to allow
//! users to create a map between their types and the types generated from .proto descriptions, while
//! providing a mechanism for additional validation of protobuf data.
//!
//! Most of the time you do not have to implement this trait because most of the use cases are covered
//! by `#[derive(ProtobufConvert)]` from `exonum_derive` crate.
//!
//! A typical example of such mapping with validation is manual implementation of this trait for `crypto::Hash`.
//! `crypto::Hash` is a fixed sized array of bytes but protobuf does not allow us to express this constraint since
//! only dynamically sized arrays are supported.
//! If you would like to use `Hash` as a part of your
//! protobuf struct, you would have to write a conversion function from protobuf `proto::Hash`(which
//! is dynamically sized array of bytes) to`crypto::Hash` and call it every time when you want to
//! use `crypto::Hash` in your application.
//!
//! The provided `ProtobufConvert` implementation for Hash allows you to embed this field into your
//! struct and generate `ProtobufConvert` for it using `#[derive(ProtobufConvert)]`, which will validate
//! your struct based on the validation function for `Hash`.
#![warn(
missing_debug_implementations,
missing_docs,
unsafe_code,
bare_trait_objects
)]
#![warn(clippy::pedantic)]
#![allow(
// Next `cast_*` lints don't give alternatives.
clippy::cast_possible_wrap, clippy::cast_possible_truncation, clippy::cast_sign_loss,
// Next lints produce too much noise/false positives.
clippy::module_name_repetitions, clippy::similar_names, clippy::must_use_candidate,
clippy::pub_enum_variant_names,
// '... may panic' lints.
clippy::indexing_slicing,
// Too much work to fix.
clippy::missing_errors_doc
)]
#[macro_use]
extern crate serde_derive; // Required for Protobuf.
pub use protobuf_convert::*;
pub mod proto;
use anyhow::{ensure, format_err, Error};
use chrono::{DateTime, TimeZone, Utc};
use protobuf::well_known_types;
use serde::{de::Visitor, Deserializer, Serializer};
use std::{collections::HashMap, convert::TryFrom, fmt};
use crate::proto::bit_vec::BitVec;
#[cfg(test)]
mod tests;
/// Used for establishing correspondence between a Rust struct and a type generated from Protobuf.
pub trait ProtobufConvert: Sized {
/// Type generated from the Protobuf definition.
type ProtoStruct;
/// Performs conversion to the type generated from Protobuf.
fn to_pb(&self) -> Self::ProtoStruct;
/// Performs conversion from the type generated from Protobuf.
fn from_pb(pb: Self::ProtoStruct) -> Result<Self, Error>;
}
impl ProtobufConvert for DateTime<Utc> {
type ProtoStruct = well_known_types::Timestamp;
fn to_pb(&self) -> Self::ProtoStruct {
let mut ts = Self::ProtoStruct::new();
ts.set_seconds(self.timestamp());
ts.set_nanos(self.timestamp_subsec_nanos() as i32);
ts
}
fn from_pb(pb: Self::ProtoStruct) -> Result<Self, Error> {
Utc.timestamp_opt(pb.get_seconds(), pb.get_nanos() as u32)
.single()
.ok_or_else(|| format_err!("Failed to convert timestamp from bytes"))
}
}
impl ProtobufConvert for String {
type ProtoStruct = Self;
fn to_pb(&self) -> Self::ProtoStruct {
self.clone()
}
fn from_pb(pb: Self::ProtoStruct) -> Result<Self, Error> {
Ok(pb)
}
}
impl ProtobufConvert for u16 {
type ProtoStruct = u32;
fn to_pb(&self) -> Self::ProtoStruct {
u32::from(*self)
}
fn from_pb(pb: Self::ProtoStruct) -> Result<Self, Error> {
u16::try_from(pb).map_err(|_| format_err!("Value is out of range"))
}
}
impl ProtobufConvert for i16 {
type ProtoStruct = i32;
fn to_pb(&self) -> Self::ProtoStruct {
i32::from(*self)
}
fn from_pb(pb: Self::ProtoStruct) -> Result<Self, Error> {
i16::try_from(pb).map_err(|_| format_err!("Value is out of range"))
}
}
impl<T> ProtobufConvert for Vec<T>
where
T: ProtobufConvert,
{
type ProtoStruct = Vec<T::ProtoStruct>;
fn to_pb(&self) -> Self::ProtoStruct {
self.iter().map(ProtobufConvert::to_pb).collect()
}
fn from_pb(pb: Self::ProtoStruct) -> Result<Self, Error> {
pb.into_iter()
.map(ProtobufConvert::from_pb)
.collect::<Result<Vec<_>, _>>()
}
}
impl ProtobufConvert for () {
type ProtoStruct = protobuf::well_known_types::Empty;
fn to_pb(&self) -> Self::ProtoStruct {
Self::ProtoStruct::default()
}
fn from_pb(_pb: Self::ProtoStruct) -> Result<Self, Error> {
Ok(())
}
}
/// Special case for protobuf bytes.
impl ProtobufConvert for Vec<u8> {
type ProtoStruct = Vec<u8>;
fn to_pb(&self) -> Self::ProtoStruct {
self.clone()
}
fn from_pb(pb: Self::ProtoStruct) -> Result<Self, Error> {
Ok(pb)
}
}
// According to protobuf specification only simple scalar types (not floats) and strings can be used
// as a map keys.
impl<K, T, S> ProtobufConvert for HashMap<K, T, S>
where
K: Eq + std::hash::Hash + std::fmt::Debug + Clone,
T: ProtobufConvert,
S: Default + std::hash::BuildHasher,
{
type ProtoStruct = HashMap<K, T::ProtoStruct, S>;
fn to_pb(&self) -> Self::ProtoStruct {
self.iter().map(|(k, v)| (k.clone(), v.to_pb())).collect()
}
fn from_pb(mut pb: Self::ProtoStruct) -> Result<Self, Error> {
pb.drain()
.map(|(k, v)| ProtobufConvert::from_pb(v).map(|v| (k, v)))
.collect::<Result<HashMap<_, _, _>, _>>()
}
}
impl ProtobufConvert for bit_vec::BitVec {
type ProtoStruct = BitVec;
fn to_pb(&self) -> Self::ProtoStruct {
let mut bit_vec = BitVec::new();
bit_vec.set_data(self.to_bytes());
bit_vec.set_len(self.len() as u64);
bit_vec
}
fn from_pb(pb: Self::ProtoStruct) -> Result<Self, Error> {
let data = pb.get_data();
let mut bit_vec = bit_vec::BitVec::from_bytes(data);
bit_vec.truncate(pb.get_len() as usize);
Ok(bit_vec)
}
}
macro_rules! impl_protobuf_convert_scalar {
( $( $name:tt ),* )=> {
$(
impl ProtobufConvert for $name {
type ProtoStruct = $name;
fn to_pb(&self) -> Self::ProtoStruct {
*self
}
fn from_pb(pb: Self::ProtoStruct) -> Result<Self, Error> {
Ok(pb)
}
}
)*
};
}
impl_protobuf_convert_scalar! { bool, u32, u64, i32, i64, f32, f64 }
macro_rules! impl_protobuf_convert_fixed_byte_array {
( $( $arr_len:expr ),* ) => {
$(
/// Special case for fixed sized arrays.
impl ProtobufConvert for [u8; $arr_len] {
type ProtoStruct = Vec<u8>;
fn to_pb(&self) -> Self::ProtoStruct {
self.to_vec()
}
fn from_pb(pb: Self::ProtoStruct) -> Result<Self, Error> {
ensure!(
pb.len() == $arr_len,
"wrong array size: actual {}, expected {}",
pb.len(),
$arr_len
);
Ok({
let mut array = [0; $arr_len];
array.copy_from_slice(&pb);
array
})
}
}
)*
};
}
// We implement array conversion only for most common array sizes that uses
// for example in cryptography.
impl_protobuf_convert_fixed_byte_array! {
8, 16, 24, 32, 40, 48, 56, 64,
72, 80, 88, 96, 104, 112, 120, 128,
160, 256, 512, 1024, 2048
}
/// Marker type for use with `#[serde(with)]`, which provides Protobuf-compatible base64 encoding
/// and decoding. For now, works only on `Vec<u8>` fields.
///
/// The encoder uses the standard base64 alphabet (i.e., `0..9A..Za..z+/`) with no padding.
/// The decoder accepts any of the 4 possible combinations: the standard or the URL-safe alphabet
/// with or without padding.
///
/// If the (de)serializer is not human-readable (e.g., CBOR or `bincode`), the bytes will be
/// (de)serialized without base64 transform, directly as a byte slice.
///
/// # Examples
///
/// ```
/// use exonum_proto::ProtobufBase64;
/// # use serde_derive::*;
/// # use serde_json::json;
///
/// #[derive(Serialize, Deserialize)]
/// struct Test {
/// /// Corresponds to a `bytes buffer = ...` field in Protobuf.
/// #[serde(with = "ProtobufBase64")]
/// buffer: Vec<u8>,
/// // other fields...
/// }
///
/// # fn main() -> anyhow::Result<()> {
/// let test = Test {
/// buffer: b"Hello!".to_vec(),
/// // ...
/// };
/// let obj = serde_json::to_value(&test)?;
/// assert_eq!(obj, json!({ "buffer": "SGVsbG8h", /* ... */ }));
/// # Ok(())
/// # }
/// ```
#[derive(Debug)]
pub struct ProtobufBase64(());
impl ProtobufBase64 {
/// Serializes the provided `bytes` with the `serializer`.
pub fn serialize<S, T>(bytes: &T, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
T: AsRef<[u8]> + ?Sized,
{
if serializer.is_human_readable() {
serializer.serialize_str(&base64::encode_config(bytes, base64::STANDARD_NO_PAD))
} else {
serializer.serialize_bytes(bytes.as_ref())
}
}
/// Decodes bytes from any of four base64 variations supported as per Protobuf spec
/// (standard or URL-safe alphabet, with or without padding).
pub fn decode(value: &str) -> Result<Vec<u8>, base64::DecodeError> {
// Remove padding if any.
let value_without_padding = if value.ends_with("==") {
&value[..value.len() - 2]
} else if value.ends_with('=') {
&value[..value.len() - 1]
} else {
value
};
let is_url_safe = value_without_padding.contains(|ch: char| ch == '-' || ch == '_');
let config = if is_url_safe {
base64::URL_SAFE_NO_PAD
} else {
base64::STANDARD_NO_PAD
};
base64::decode_config(value_without_padding, config)
}
/// Deserializes `Vec<u8>` using the provided serializer.
pub fn deserialize<'de, D>(deserializer: D) -> Result<Vec<u8>, D::Error>
where
D: Deserializer<'de>,
{
use serde::de::Error as DeError;
struct Base64Visitor;
impl<'de> Visitor<'de> for Base64Visitor {
type Value = Vec<u8>;
fn expecting(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str("base64-encoded byte array")
}
fn visit_str<E: DeError>(self, value: &str) -> Result<Self::Value, E> {
ProtobufBase64::decode(value).map_err(E::custom)
}
// Needed to guard against non-obvious serialization of flattened fields in `serde`.
fn visit_bytes<E: DeError>(self, value: &[u8]) -> Result<Self::Value, E> {
Ok(value.to_vec())
}
}
struct BytesVisitor;
impl<'de> Visitor<'de> for BytesVisitor {
type Value = Vec<u8>;
fn expecting(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str("byte array")
}
fn visit_bytes<E: DeError>(self, value: &[u8]) -> Result<Self::Value, E> {
Ok(value.to_vec())
}
}
if deserializer.is_human_readable() {
deserializer.deserialize_str(Base64Visitor)
} else {
deserializer.deserialize_bytes(BytesVisitor)
}
}
}