1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
// Copyright 2019 TiKV Project Authors. Licensed under Apache-2.0. //! A fail point implementation for Rust. //! //! Fail points are code instrumentations that allow errors and other behavior //! to be injected dynamically at runtime, primarily for testing purposes. Fail //! points are flexible and can be configured to exhibit a variety of behavior, //! including panics, early returns, and sleeping. They can be controlled both //! programmatically and via the environment, and can be triggered //! conditionally and probabilistically. //! //! This crate is inspired by FreeBSD's //! [failpoints](https://freebsd.org/cgi/man.cgi?query=fail). //! //! ## Usage //! //! First, add this to your `Cargo.toml`: //! //! ```toml //! [dependencies] //! fail = "0.4" //! ``` //! //! Now you can import the `fail_point!` macro from the `fail` crate and use it //! to inject dynamic failures. //! //! As an example, here's a simple program that uses a fail point to simulate an //! I/O panic: //! //! ```rust //! use fail::{fail_point, FailScenario}; //! //! fn do_fallible_work() { //! fail_point!("read-dir"); //! let _dir: Vec<_> = std::fs::read_dir(".").unwrap().collect(); //! // ... do some work on the directory ... //! } //! //! let scenario = FailScenario::setup(); //! do_fallible_work(); //! scenario.teardown(); //! println!("done"); //! ``` //! //! Here, the program calls `unwrap` on the result of `read_dir`, a function //! that returns a `Result`. In other words, this particular program expects //! this call to `read_dir` to always succeed. And in practice it almost always //! will, which makes the behavior of this program when `read_dir` fails //! difficult to test. By instrumenting the program with a fail point we can //! pretend that `read_dir` failed, causing the subsequent `unwrap` to panic, //! and allowing us to observe the program's behavior under failure conditions. //! //! When the program is run normally it just prints "done": //! //! ```sh //! $ cargo run --features fail/failpoints //! Finished dev [unoptimized + debuginfo] target(s) in 0.01s //! Running `target/debug/failpointtest` //! done //! ``` //! //! But now, by setting the `FAILPOINTS` variable we can see what happens if the //! `read_dir` fails: //! //! ```sh //! FAILPOINTS=read-dir=panic cargo run --features fail/failpoints //! Finished dev [unoptimized + debuginfo] target(s) in 0.01s //! Running `target/debug/failpointtest` //! thread 'main' panicked at 'failpoint read-dir panic', /home/ubuntu/.cargo/registry/src/github.com-1ecc6299db9ec823/fail-0.2.0/src/lib.rs:286:25 //! note: Run with `RUST_BACKTRACE=1` for a backtrace. //! ``` //! //! ## Usage in tests //! //! The previous example triggers a fail point by modifying the `FAILPOINT` //! environment variable. In practice, you'll often want to trigger fail points //! programmatically, in unit tests. //! Fail points are global resources, and Rust tests run in parallel, //! so tests that exercise fail points generally need to hold a lock to //! avoid interfering with each other. This is accomplished by `FailScenario`. //! //! Here's a basic pattern for writing unit tests tests with fail points: //! //! ```rust //! use fail::{fail_point, FailScenario}; //! //! fn do_fallible_work() { //! fail_point!("read-dir"); //! let _dir: Vec<_> = std::fs::read_dir(".").unwrap().collect(); //! // ... do some work on the directory ... //! } //! //! #[test] //! #[should_panic] //! fn test_fallible_work() { //! let scenario = FailScenario::setup(); //! fail::cfg("read-dir", "panic").unwrap(); //! //! do_fallible_work(); //! //! scenario.teardown(); //! } //! ``` //! //! Even if a test does not itself turn on any fail points, code that it runs //! could trigger a fail point that was configured by another thread. Because of //! this it is a best practice to put all fail point unit tests into their own //! binary. Here's an example of a snippet from `Cargo.toml` that creates a //! fail-point-specific test binary: //! //! ```toml //! [[test]] //! name = "failpoints" //! path = "tests/failpoints/mod.rs" //! required-features = ["fail/failpoints"] //! ``` //! //! //! ## Early return //! //! The previous examples illustrate injecting panics via fail points, but //! panics aren't the only — or even the most common — error pattern //! in Rust. The more common type of error is propagated by `Result` return //! values, and fail points can inject those as well with "early returns". That //! is, when configuring a fail point as "return" (as opposed to "panic"), the //! fail point will immediately return from the function, optionally with a //! configurable value. //! //! The setup for early return requires a slightly diferent invocation of the //! `fail_point!` macro. To illustrate this, let's modify the `do_fallible_work` //! function we used earlier to return a `Result`: //! //! ```rust //! use fail::{fail_point, FailScenario}; //! use std::io; //! //! fn do_fallible_work() -> io::Result<()> { //! fail_point!("read-dir"); //! let _dir: Vec<_> = std::fs::read_dir(".")?.collect(); //! // ... do some work on the directory ... //! Ok(()) //! } //! //! fn main() -> io::Result<()> { //! let scenario = FailScenario::setup(); //! do_fallible_work()?; //! scenario.teardown(); //! println!("done"); //! Ok(()) //! } //! ``` //! //! This example has more proper Rust error handling, with no unwraps //! anywhere. Instead it uses `?` to propagate errors via the `Result` type //! return values. This is more realistic Rust code. //! //! The "read-dir" fail point though is not yet configured to support early //! return, so if we attempt to configure it to "return", we'll see an error //! like //! //! ```sh //! $ FAILPOINTS=read-dir=return cargo run --features fail/failpoints //! Finished dev [unoptimized + debuginfo] target(s) in 0.13s //! Running `target/debug/failpointtest` //! thread 'main' panicked at 'Return is not supported for the fail point "read-dir"', src/main.rs:7:5 //! note: Run with `RUST_BACKTRACE=1` for a backtrace. //! ``` //! //! This error tells us that the "read-dir" fail point is not defined correctly //! to support early return, and gives us the line number of that fail point. //! What we're missing in the fail point definition is code describring _how_ to //! return an error value, and the way we do this is by passing `fail_point!` a //! closure that returns the same type as the enclosing function. //! //! Here's a variation that does so: //! //! ```rust //! # use std::io; //! fn do_fallible_work() -> io::Result<()> { //! fail::fail_point!("read-dir", |_| { //! Err(io::Error::new(io::ErrorKind::PermissionDenied, "error")) //! }); //! let _dir: Vec<_> = std::fs::read_dir(".")?.collect(); //! // ... do some work on the directory ... //! Ok(()) //! } //! ``` //! //! And now if the "read-dir" fail point is configured to "return" we get a //! different result: //! //! ```sh //! $ FAILPOINTS=read-dir=return cargo run --features fail/failpoints //! Compiling failpointtest v0.1.0 //! Finished dev [unoptimized + debuginfo] target(s) in 2.38s //! Running `target/debug/failpointtest` //! Error: Custom { kind: PermissionDenied, error: StringError("error") } //! ``` //! //! This time, `do_fallible_work` returned the error defined in our closure, //! which propagated all the way up and out of main. //! //! ## Advanced usage //! //! That's the basics of fail points: defining them with `fail_point!`, //! configuring them with `FAILPOINTS` and `fail::cfg`, and configuring them to //! panic and return early. But that's not all they can do. To learn more see //! the documentation for [`cfg`](fn.cfg.html), //! [`cfg_callback`](fn.cfg_callback.html) and //! [`fail_point!`](macro.fail_point.html). //! //! //! ## Usage considerations //! //! For most effective fail point usage, keep in mind the following: //! //! - Fail points are disabled by default and can be enabled via the `failpoints` //! feature. When failpoints are disabled, no code is generated by the macro. //! - Carefully consider complex, concurrent, non-deterministic combinations of //! fail points. Put test cases exercising fail points into their own test //! crate. //! - Fail points might have the same name, in which case they take the //! same actions. Be careful about duplicating fail point names, either within //! a single crate, or across multiple crates. #![deny(missing_docs, missing_debug_implementations)] use std::collections::HashMap; use std::env::VarError; use std::fmt::Debug; use std::str::FromStr; use std::sync::atomic::{AtomicUsize, Ordering}; use std::sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, TryLockError}; use std::time::{Duration, Instant}; use std::{env, thread}; #[derive(Clone)] struct SyncCallback(Arc<dyn Fn() + Send + Sync>); impl Debug for SyncCallback { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { f.write_str("SyncCallback()") } } impl PartialEq for SyncCallback { fn eq(&self, other: &Self) -> bool { Arc::ptr_eq(&self.0, &other.0) } } impl SyncCallback { fn new(f: impl Fn() + Send + Sync + 'static) -> SyncCallback { SyncCallback(Arc::new(f)) } fn run(&self) { let callback = &self.0; callback(); } } /// Supported tasks. #[derive(Clone, Debug, PartialEq)] enum Task { /// Do nothing. Off, /// Return the value. Return(Option<String>), /// Sleep for some milliseconds. Sleep(u64), /// Panic with the message. Panic(Option<String>), /// Print the message. Print(Option<String>), /// Sleep until other action is set. Pause, /// Yield the CPU. Yield, /// Busy waiting for some milliseconds. Delay(u64), /// Call callback function. Callback(SyncCallback), } #[derive(Debug)] struct Action { task: Task, freq: f32, count: Option<AtomicUsize>, } impl PartialEq for Action { fn eq(&self, hs: &Action) -> bool { if self.task != hs.task || self.freq != hs.freq { return false; } if let Some(ref lhs) = self.count { if let Some(ref rhs) = hs.count { return lhs.load(Ordering::Relaxed) == rhs.load(Ordering::Relaxed); } } else if hs.count.is_none() { return true; } false } } impl Action { fn new(task: Task, freq: f32, max_cnt: Option<usize>) -> Action { Action { task, freq, count: max_cnt.map(AtomicUsize::new), } } fn from_callback(f: impl Fn() + Send + Sync + 'static) -> Action { let task = Task::Callback(SyncCallback::new(f)); Action { task, freq: 1.0, count: None, } } fn get_task(&self) -> Option<Task> { use rand::Rng; if let Some(ref cnt) = self.count { let c = cnt.load(Ordering::Acquire); if c == 0 { return None; } } if self.freq < 1f32 && !rand::thread_rng().gen_bool(f64::from(self.freq)) { return None; } if let Some(ref cnt) = self.count { loop { let c = cnt.load(Ordering::Acquire); if c == 0 { return None; } if c == cnt.compare_and_swap(c, c - 1, Ordering::AcqRel) { break; } } } Some(self.task.clone()) } } fn partition(s: &str, pattern: char) -> (&str, Option<&str>) { let mut splits = s.splitn(2, pattern); (splits.next().unwrap(), splits.next()) } impl FromStr for Action { type Err = String; /// Parse an action. /// /// `s` should be in the format `[p%][cnt*]task[(args)]`, `p%` is the frequency, /// `cnt` is the max times the action can be triggered. fn from_str(s: &str) -> Result<Action, String> { let mut remain = s.trim(); let mut args = None; // in case there is '%' in args, we need to parse it first. let (first, second) = partition(remain, '('); if let Some(second) = second { remain = first; if !second.ends_with(')') { return Err("parentheses do not match".to_owned()); } args = Some(&second[..second.len() - 1]); } let mut frequency = 1f32; let (first, second) = partition(remain, '%'); if let Some(second) = second { remain = second; match first.parse::<f32>() { Err(e) => return Err(format!("failed to parse frequency: {}", e)), Ok(freq) => frequency = freq / 100.0, } } let mut max_cnt = None; let (first, second) = partition(remain, '*'); if let Some(second) = second { remain = second; match first.parse() { Err(e) => return Err(format!("failed to parse count: {}", e)), Ok(cnt) => max_cnt = Some(cnt), } } let parse_timeout = || match args { None => Err("sleep require timeout".to_owned()), Some(timeout_str) => match timeout_str.parse() { Err(e) => Err(format!("failed to parse timeout: {}", e)), Ok(timeout) => Ok(timeout), }, }; let task = match remain { "off" => Task::Off, "return" => Task::Return(args.map(str::to_owned)), "sleep" => Task::Sleep(parse_timeout()?), "panic" => Task::Panic(args.map(str::to_owned)), "print" => Task::Print(args.map(str::to_owned)), "pause" => Task::Pause, "yield" => Task::Yield, "delay" => Task::Delay(parse_timeout()?), _ => return Err(format!("unrecognized command {:?}", remain)), }; Ok(Action::new(task, frequency, max_cnt)) } } #[cfg_attr(feature = "cargo-clippy", allow(clippy::mutex_atomic))] #[derive(Debug)] struct FailPoint { pause: Mutex<bool>, pause_notifier: Condvar, actions: RwLock<Vec<Action>>, actions_str: RwLock<String>, } #[cfg_attr(feature = "cargo-clippy", allow(clippy::mutex_atomic))] impl FailPoint { fn new() -> FailPoint { FailPoint { pause: Mutex::new(false), pause_notifier: Condvar::new(), actions: RwLock::default(), actions_str: RwLock::default(), } } fn set_actions(&self, actions_str: &str, actions: Vec<Action>) { loop { // TODO: maybe busy waiting here. match self.actions.try_write() { Err(TryLockError::WouldBlock) => {} Ok(mut guard) => { *guard = actions; *self.actions_str.write().unwrap() = actions_str.to_string(); return; } Err(e) => panic!("unexpected poison: {:?}", e), } let mut guard = self.pause.lock().unwrap(); *guard = false; self.pause_notifier.notify_all(); } } #[cfg_attr(feature = "cargo-clippy", allow(clippy::option_option))] fn eval(&self, name: &str) -> Option<Option<String>> { let task = { let actions = self.actions.read().unwrap(); match actions.iter().filter_map(Action::get_task).next() { Some(Task::Pause) => { let mut guard = self.pause.lock().unwrap(); *guard = true; loop { guard = self.pause_notifier.wait(guard).unwrap(); if !*guard { break; } } return None; } Some(t) => t, None => return None, } }; match task { Task::Off => {} Task::Return(s) => return Some(s), Task::Sleep(t) => thread::sleep(Duration::from_millis(t)), Task::Panic(msg) => match msg { Some(ref msg) => panic!("{}", msg), None => panic!("failpoint {} panic", name), }, Task::Print(msg) => match msg { Some(ref msg) => log::info!("{}", msg), None => log::info!("failpoint {} executed.", name), }, Task::Pause => unreachable!(), Task::Yield => thread::yield_now(), Task::Delay(t) => { let timer = Instant::now(); let timeout = Duration::from_millis(t); while timer.elapsed() < timeout {} } Task::Callback(f) => { f.run(); } } None } } /// Registry with failpoints configuration. type Registry = HashMap<String, Arc<FailPoint>>; #[derive(Debug, Default)] struct FailPointRegistry { // TODO: remove rwlock or store *mut FailPoint registry: RwLock<Registry>, } lazy_static::lazy_static! { static ref REGISTRY: FailPointRegistry = FailPointRegistry::default(); static ref SCENARIO: Mutex<&'static FailPointRegistry> = Mutex::new(®ISTRY); } /// Test scenario with configured fail points. #[derive(Debug)] pub struct FailScenario<'a> { scenario_guard: MutexGuard<'a, &'static FailPointRegistry>, } impl<'a> FailScenario<'a> { /// Set up the system for a fail points scenario. /// /// Configures all fail points specified in the `FAILPOINTS` environment variable. /// It does not otherwise change any existing fail point configuration. /// /// The format of `FAILPOINTS` is `failpoint=actions;...`, where /// `failpoint` is the name of the fail point. For more information /// about fail point actions see the [`cfg`](fn.cfg.html) function and /// the [`fail_point`](macro.fail_point.html) macro. /// /// `FAILPOINTS` may configure fail points that are not actually defined. In /// this case the configuration has no effect. /// /// This function should generally be called prior to running a test with fail /// points, and afterward paired with [`teardown`](#method.teardown). /// /// # Panics /// /// Panics if an action is not formatted correctly. pub fn setup() -> Self { // Cleanup first, in case of previous failed/panic'ed test scenarios. let scenario_guard = SCENARIO.lock().unwrap_or_else(|e| e.into_inner()); let mut registry = scenario_guard.registry.write().unwrap(); Self::cleanup(&mut registry); let failpoints = match env::var("FAILPOINTS") { Ok(s) => s, Err(VarError::NotPresent) => return Self { scenario_guard }, Err(e) => panic!("invalid failpoints: {:?}", e), }; for mut cfg in failpoints.trim().split(';') { cfg = cfg.trim(); if cfg.is_empty() { continue; } let (name, order) = partition(cfg, '='); match order { None => panic!("invalid failpoint: {:?}", cfg), Some(order) => { if let Err(e) = set(&mut registry, name.to_owned(), order) { panic!("unable to configure failpoint \"{}\": {}", name, e); } } } } Self { scenario_guard } } /// Tear down the fail point system. /// /// Clears the configuration of all fail points. Any paused fail /// points will be notified before they are deactivated. /// /// This function should generally be called after running a test with fail points. /// Calling `teardown` without previously calling `setup` results in a no-op. pub fn teardown(self) { drop(self) } /// Clean all registered fail points. fn cleanup(registry: &mut std::sync::RwLockWriteGuard<'a, Registry>) { for p in registry.values() { // wake up all pause failpoint. p.set_actions("", vec![]); } registry.clear(); } } impl<'a> Drop for FailScenario<'a> { fn drop(&mut self) { let mut registry = self.scenario_guard.registry.write().unwrap(); Self::cleanup(&mut registry) } } /// Returns whether code generation for failpoints is enabled. /// /// This function allows consumers to check (at runtime) whether the library /// was compiled with the (buildtime) `failpoints` feature, which enables /// code generation for failpoints. pub const fn has_failpoints() -> bool { cfg!(feature = "failpoints") } /// Get all registered fail points. /// /// Return a vector of `(name, actions)` pairs. pub fn list() -> Vec<(String, String)> { let registry = REGISTRY.registry.read().unwrap(); registry .iter() .map(|(name, fp)| (name.to_string(), fp.actions_str.read().unwrap().clone())) .collect() } #[doc(hidden)] pub fn eval<R, F: FnOnce(Option<String>) -> R>(name: &str, f: F) -> Option<R> { let p = { let registry = REGISTRY.registry.read().unwrap(); match registry.get(name) { None => return None, Some(p) => p.clone(), } }; p.eval(name).map(f) } /// Configure the actions for a fail point at runtime. /// /// Each fail point can be configured with a series of actions, specified by the /// `actions` argument. The format of `actions` is `action[->action...]`. When /// multiple actions are specified, an action will be checked only when its /// former action is not triggered. /// /// The format of a single action is `[p%][cnt*]task[(arg)]`. `p%` is the /// expected probability that the action is triggered, and `cnt*` is the max /// times the action can be triggered. The supported values of `task` are: /// /// - `off`, the fail point will do nothing. /// - `return(arg)`, return early when the fail point is triggered. `arg` is passed to `$e` ( /// defined via the `fail_point!` macro) as a string. /// - `sleep(milliseconds)`, sleep for the specified time. /// - `panic(msg)`, panic with the message. /// - `print(msg)`, log the message, using the `log` crate, at the `info` level. /// - `pause`, sleep until other action is set to the fail point. /// - `yield`, yield the CPU. /// - `delay(milliseconds)`, busy waiting for the specified time. /// /// For example, `20%3*print(still alive!)->panic` means the fail point has 20% chance to print a /// message "still alive!" and 80% chance to panic. And the message will be printed at most 3 /// times. /// /// The `FAILPOINTS` environment variable accepts this same syntax for its fail /// point actions. /// /// A call to `cfg` with a particular fail point name overwrites any existing actions for /// that fail point, including those set via the `FAILPOINTS` environment variable. pub fn cfg<S: Into<String>>(name: S, actions: &str) -> Result<(), String> { let mut registry = REGISTRY.registry.write().unwrap(); set(&mut registry, name.into(), actions) } /// Configure the actions for a fail point at runtime. /// /// Each fail point can be configured by a callback. Process will call this callback function /// when it meet this fail-point. pub fn cfg_callback<S, F>(name: S, f: F) -> Result<(), String> where S: Into<String>, F: Fn() + Send + Sync + 'static, { let mut registry = REGISTRY.registry.write().unwrap(); let p = registry .entry(name.into()) .or_insert_with(|| Arc::new(FailPoint::new())); let action = Action::from_callback(f); let actions = vec![action]; p.set_actions("callback", actions); Ok(()) } /// Remove a fail point. /// /// If the fail point doesn't exist, nothing will happen. pub fn remove<S: AsRef<str>>(name: S) { let mut registry = REGISTRY.registry.write().unwrap(); if let Some(p) = registry.remove(name.as_ref()) { // wake up all pause failpoint. p.set_actions("", vec![]); } } fn set( registry: &mut HashMap<String, Arc<FailPoint>>, name: String, actions: &str, ) -> Result<(), String> { let actions_str = actions; // `actions` are in the format of `failpoint[->failpoint...]`. let actions = actions .split("->") .map(Action::from_str) .collect::<Result<_, _>>()?; // Please note that we can't figure out whether there is a failpoint named `name`, // so we may insert a failpoint that doesn't exist at all. let p = registry .entry(name) .or_insert_with(|| Arc::new(FailPoint::new())); p.set_actions(actions_str, actions); Ok(()) } /// Define a fail point (requires `failpoints` feature). /// /// The `fail_point!` macro has three forms, and they all take a name as the /// first argument. The simplest form takes only a name and is suitable for /// executing most fail point behavior, including panicking, but not for early /// return or conditional execution based on a local flag. /// /// The three forms of fail points look as follows. /// /// 1. A basic fail point: /// /// ```rust /// # #[macro_use] extern crate fail; /// fn function_return_unit() { /// fail_point!("fail-point-1"); /// } /// ``` /// /// This form of fail point can be configured to panic, print, sleep, pause, etc., but /// not to return from the function early. /// /// 2. A fail point that may return early: /// /// ```rust /// # #[macro_use] extern crate fail; /// fn function_return_value() -> u64 { /// fail_point!("fail-point-2", |r| r.map_or(2, |e| e.parse().unwrap())); /// 0 /// } /// ``` /// /// This form of fail point can additionally be configured to return early from /// the enclosing function. It accepts a closure, which itself accepts an /// `Option<String>`, and is expected to transform that argument into the early /// return value. The argument string is sourced from the fail point /// configuration string. For example configuring this "fail-point-2" as /// "return(100)" will execute the fail point closure, passing it a `Some` value /// containing a `String` equal to "100"; the closure then parses it into the /// return value. /// /// 3. A fail point with conditional execution: /// /// ```rust /// # #[macro_use] extern crate fail; /// fn function_conditional(enable: bool) { /// fail_point!("fail-point-3", enable, |_| {}); /// } /// ``` /// /// In this final form, the second argument is a local boolean expression that /// must evaluate to `true` before the fail point is evaluated. The third /// argument is again an early-return closure. /// /// The three macro arguments (or "designators") are called `$name`, `$cond`, /// and `$e`. `$name` must be `&str`, `$cond` must be a boolean expression, /// and`$e` must be a function or closure that accepts an `Option<String>` and /// returns the same type as the enclosing function. /// /// For more examples see the [crate documentation](index.html). For more /// information about controlling fail points see the [`cfg`](fn.cfg.html) /// function. #[macro_export] #[cfg(feature = "failpoints")] macro_rules! fail_point { ($name:expr) => {{ $crate::eval($name, |_| { panic!("Return is not supported for the fail point \"{}\"", $name); }); }}; ($name:expr, $e:expr) => {{ if let Some(res) = $crate::eval($name, $e) { return res; } }}; ($name:expr, $cond:expr, $e:expr) => {{ if $cond { fail_point!($name, $e); } }}; } /// Define a fail point (disabled, see `failpoints` feature). #[macro_export] #[cfg(not(feature = "failpoints"))] macro_rules! fail_point { ($name:expr, $e:expr) => {{}}; ($name:expr) => {{}}; ($name:expr, $cond:expr, $e:expr) => {{}}; } #[cfg(test)] mod tests { use super::*; use std::sync::*; #[test] fn test_has_failpoints() { assert_eq!(cfg!(feature = "failpoints"), has_failpoints()); } #[test] fn test_off() { let point = FailPoint::new(); point.set_actions("", vec![Action::new(Task::Off, 1.0, None)]); assert!(point.eval("test_fail_point_off").is_none()); } #[test] fn test_return() { let point = FailPoint::new(); point.set_actions("", vec![Action::new(Task::Return(None), 1.0, None)]); let res = point.eval("test_fail_point_return"); assert_eq!(res, Some(None)); let ret = Some("test".to_owned()); point.set_actions("", vec![Action::new(Task::Return(ret.clone()), 1.0, None)]); let res = point.eval("test_fail_point_return"); assert_eq!(res, Some(ret)); } #[test] fn test_sleep() { let point = FailPoint::new(); let timer = Instant::now(); point.set_actions("", vec![Action::new(Task::Sleep(1000), 1.0, None)]); assert!(point.eval("test_fail_point_sleep").is_none()); assert!(timer.elapsed() > Duration::from_millis(1000)); } #[should_panic] #[test] fn test_panic() { let point = FailPoint::new(); point.set_actions("", vec![Action::new(Task::Panic(None), 1.0, None)]); point.eval("test_fail_point_panic"); } #[test] fn test_print() { struct LogCollector(Arc<Mutex<Vec<String>>>); impl log::Log for LogCollector { fn enabled(&self, _: &log::Metadata) -> bool { true } fn log(&self, record: &log::Record) { let mut buf = self.0.lock().unwrap(); buf.push(format!("{}", record.args())); } fn flush(&self) {} } let buffer = Arc::new(Mutex::new(vec![])); let collector = LogCollector(buffer.clone()); log::set_max_level(log::LevelFilter::Info); log::set_boxed_logger(Box::new(collector)).unwrap(); let point = FailPoint::new(); point.set_actions("", vec![Action::new(Task::Print(None), 1.0, None)]); assert!(point.eval("test_fail_point_print").is_none()); let msg = buffer.lock().unwrap().pop().unwrap(); assert_eq!(msg, "failpoint test_fail_point_print executed."); } #[test] fn test_pause() { let point = Arc::new(FailPoint::new()); point.set_actions("", vec![Action::new(Task::Pause, 1.0, None)]); let p = point.clone(); let (tx, rx) = mpsc::channel(); thread::spawn(move || { assert_eq!(p.eval("test_fail_point_pause"), None); tx.send(()).unwrap(); }); assert!(rx.recv_timeout(Duration::from_secs(1)).is_err()); point.set_actions("", vec![Action::new(Task::Off, 1.0, None)]); rx.recv_timeout(Duration::from_secs(1)).unwrap(); } #[test] fn test_yield() { let point = FailPoint::new(); point.set_actions("", vec![Action::new(Task::Yield, 1.0, None)]); assert!(point.eval("test_fail_point_yield").is_none()); } #[test] fn test_delay() { let point = FailPoint::new(); let timer = Instant::now(); point.set_actions("", vec![Action::new(Task::Delay(1000), 1.0, None)]); assert!(point.eval("test_fail_point_delay").is_none()); assert!(timer.elapsed() > Duration::from_millis(1000)); } #[test] fn test_frequency_and_count() { let point = FailPoint::new(); point.set_actions("", vec![Action::new(Task::Return(None), 0.8, Some(100))]); let mut count = 0; let mut times = 0f64; while count < 100 { if point.eval("test_fail_point_frequency").is_some() { count += 1; } times += 1f64; } assert!(100.0 / 0.9 < times && times < 100.0 / 0.7, "{}", times); for _ in 0..times as u64 { assert!(point.eval("test_fail_point_frequency").is_none()); } } #[test] fn test_parse() { let cases = vec![ ("return", Action::new(Task::Return(None), 1.0, None)), ( "return(64)", Action::new(Task::Return(Some("64".to_owned())), 1.0, None), ), ("5*return", Action::new(Task::Return(None), 1.0, Some(5))), ("25%return", Action::new(Task::Return(None), 0.25, None)), ( "125%2*return", Action::new(Task::Return(None), 1.25, Some(2)), ), ( "return(2%5)", Action::new(Task::Return(Some("2%5".to_owned())), 1.0, None), ), ("125%2*off", Action::new(Task::Off, 1.25, Some(2))), ( "125%2*sleep(100)", Action::new(Task::Sleep(100), 1.25, Some(2)), ), (" 125%2*off ", Action::new(Task::Off, 1.25, Some(2))), ("125%2*panic", Action::new(Task::Panic(None), 1.25, Some(2))), ( "125%2*panic(msg)", Action::new(Task::Panic(Some("msg".to_owned())), 1.25, Some(2)), ), ("125%2*print", Action::new(Task::Print(None), 1.25, Some(2))), ( "125%2*print(msg)", Action::new(Task::Print(Some("msg".to_owned())), 1.25, Some(2)), ), ("125%2*pause", Action::new(Task::Pause, 1.25, Some(2))), ("125%2*yield", Action::new(Task::Yield, 1.25, Some(2))), ("125%2*delay(2)", Action::new(Task::Delay(2), 1.25, Some(2))), ]; for (expr, exp) in cases { let res: Action = expr.parse().unwrap(); assert_eq!(res, exp); } let fail_cases = vec![ "delay", "sleep", "Return", "ab%return", "ab*return", "return(msg", "unknown", ]; for case in fail_cases { assert!(case.parse::<Action>().is_err()); } } // This case should be tested as integration case, but when calling `teardown` other cases // like `test_pause` maybe also affected, so it's better keep it here. #[test] #[cfg_attr(not(feature = "failpoints"), ignore)] fn test_setup_and_teardown() { let f1 = || { fail_point!("setup_and_teardown1", |_| 1); 0 }; let f2 = || { fail_point!("setup_and_teardown2", |_| 2); 0 }; env::set_var( "FAILPOINTS", "setup_and_teardown1=return;setup_and_teardown2=pause;", ); let scenario = FailScenario::setup(); assert_eq!(f1(), 1); let (tx, rx) = mpsc::channel(); thread::spawn(move || { tx.send(f2()).unwrap(); }); assert!(rx.recv_timeout(Duration::from_millis(500)).is_err()); scenario.teardown(); assert_eq!(rx.recv_timeout(Duration::from_millis(500)).unwrap(), 0); assert_eq!(f1(), 0); } }