1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#![cfg_attr(not(any(test, feature = "std")), no_std)]

#[cfg(feature = "alloc")]
extern crate alloc;

mod decode;
mod encode;
mod error;

#[cfg(feature = "serde")]
mod serde;

pub use crate::decode::{
    hex_check, hex_check_fallback, hex_check_with_case, hex_decode, hex_decode_fallback,
    hex_decode_unchecked,
};
pub use crate::encode::{
    hex_encode, hex_encode_fallback, hex_encode_upper, hex_encode_upper_fallback,
};
#[cfg(feature = "alloc")]
pub use crate::encode::{hex_string, hex_string_upper};

pub use crate::error::Error;

#[cfg(feature = "serde")]
pub use crate::serde::{
    deserialize, nopfx_ignorecase, nopfx_lowercase, nopfx_uppercase, serialize, withpfx_ignorecase,
    withpfx_lowercase, withpfx_uppercase,
};

#[allow(deprecated)]
pub use crate::encode::hex_to;

#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
pub use crate::decode::{hex_check_sse, hex_check_sse_with_case};

#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub(crate) enum Vectorization {
    None = 0,
    SSE41 = 1,
    AVX2 = 2,
}

#[inline(always)]
pub(crate) fn vectorization_support() -> Vectorization {
    #[cfg(all(any(target_arch = "x86", target_arch = "x86_64")))]
    {
        use core::sync::atomic::{AtomicU8, Ordering};
        static FLAGS: AtomicU8 = AtomicU8::new(u8::MAX);

        // We're OK with relaxed, worst case scenario multiple threads checked the CPUID.
        let current_flags = FLAGS.load(Ordering::Relaxed);
        // u8::MAX means uninitialized.
        if current_flags != u8::MAX {
            return match current_flags {
                0 => Vectorization::None,
                1 => Vectorization::SSE41,
                2 => Vectorization::AVX2,
                _ => unreachable!(),
            };
        }

        let val = vectorization_support_no_cache_x86();

        FLAGS.store(val as u8, Ordering::Relaxed);
        return val;
    }
    #[allow(unreachable_code)]
    Vectorization::None
}

#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[cold]
fn vectorization_support_no_cache_x86() -> Vectorization {
    #[cfg(target_arch = "x86")]
    use core::arch::x86::__cpuid_count;
    #[cfg(target_arch = "x86_64")]
    use core::arch::x86_64::__cpuid_count;

    // SGX doesn't support CPUID,
    // If there's no SSE there might not be CPUID and there's no SSE4.1/AVX2
    if cfg!(target_env = "sgx") || !cfg!(target_feature = "sse") {
        return Vectorization::None;
    }

    let proc_info_ecx = unsafe { __cpuid_count(1, 0) }.ecx;
    let have_sse4 = (proc_info_ecx >> 19) & 1 == 1;
    // If there's no SSE4 there can't be AVX2.
    if !have_sse4 {
        return Vectorization::None;
    }

    let have_xsave = (proc_info_ecx >> 26) & 1 == 1;
    let have_osxsave = (proc_info_ecx >> 27) & 1 == 1;
    let have_avx = (proc_info_ecx >> 27) & 1 == 1;
    if have_xsave && have_osxsave && have_avx {
        // # Safety: We checked that the processor supports xsave
        if unsafe { avx2_support_no_cache_x86() } {
            return Vectorization::AVX2;
        }
    }
    Vectorization::SSE41
}

// We enable xsave so it can inline the _xgetbv call.
// # Safety: Safe as long it's only called when xsave is supported
#[target_feature(enable = "xsave")]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[cold]
unsafe fn avx2_support_no_cache_x86() -> bool {
    #[cfg(target_arch = "x86")]
    use core::arch::x86::{__cpuid_count, _xgetbv};
    #[cfg(target_arch = "x86_64")]
    use core::arch::x86_64::{__cpuid_count, _xgetbv};

    let xcr0 = _xgetbv(0);
    let os_avx_support = xcr0 & 6 == 6;
    if os_avx_support {
        let extended_features_ebx = __cpuid_count(7, 0).ebx;
        let have_avx2 = (extended_features_ebx >> 5) & 1 == 1;
        if have_avx2 {
            return true;
        }
    }
    false
}

#[cfg(test)]
mod tests {
    use crate::decode::{hex_decode, hex_decode_with_case, CheckCase};
    use crate::encode::{hex_encode, hex_string};
    use crate::{hex_encode_upper, hex_string_upper, vectorization_support, Vectorization};
    use proptest::proptest;

    #[test]
    fn test_feature_detection() {
        let vector_support = vectorization_support();
        #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
        {
            match vector_support {
                Vectorization::AVX2 => assert!(is_x86_feature_detected!("avx2")),
                Vectorization::SSE41 => assert!(is_x86_feature_detected!("sse4.1")),
                Vectorization::None => assert!(
                    !cfg!(target_feature = "sse")
                        || !is_x86_feature_detected!("avx2") && !is_x86_feature_detected!("sse4.1")
                ),
            }
        }
        #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
        assert_eq!(vector_support, Vectorization::None);
    }

    fn _test_hex_encode(s: &String) {
        let mut buffer = vec![0; s.as_bytes().len() * 2];
        {
            let encode = &*hex_encode(s.as_bytes(), &mut buffer).unwrap();

            let hex_string = hex_string(s.as_bytes());

            assert_eq!(encode, hex::encode(s));
            assert_eq!(hex_string, hex::encode(s));
        }

        {
            let encode_upper = &*hex_encode_upper(s.as_bytes(), &mut buffer).unwrap();

            let hex_string_upper = hex_string_upper(s.as_bytes());

            assert_eq!(encode_upper, hex::encode_upper(s));
            assert_eq!(hex_string_upper, hex::encode_upper(s));
        }
    }

    proptest! {
        #[test]
        fn test_hex_encode(ref s in ".*") {
            _test_hex_encode(s);
        }
    }

    fn _test_hex_decode(s: &String) {
        let len = s.as_bytes().len();

        {
            let mut dst = Vec::with_capacity(len);
            dst.resize(len, 0);
            let hex_string = hex_string(s.as_bytes());

            hex_decode(hex_string.as_bytes(), &mut dst).unwrap();

            hex_decode_with_case(hex_string.as_bytes(), &mut dst, CheckCase::Lower).unwrap();

            assert_eq!(&dst[..], s.as_bytes());
        }
        {
            let mut dst = Vec::with_capacity(len);
            dst.resize(len, 0);
            let hex_string_upper = hex_string_upper(s.as_bytes());

            hex_decode_with_case(hex_string_upper.as_bytes(), &mut dst, CheckCase::Upper).unwrap();

            assert_eq!(&dst[..], s.as_bytes());
        }
    }

    proptest! {
        #[test]
        fn test_hex_decode(ref s in ".+") {
            _test_hex_decode(s);
        }
    }

    fn _test_hex_decode_check(s: &String, ok: bool) {
        let len = s.as_bytes().len();
        let mut dst = Vec::with_capacity(len / 2);
        dst.resize(len / 2, 0);
        assert!(hex_decode(s.as_bytes(), &mut dst).is_ok() == ok);
    }

    proptest! {
        #[test]
        fn test_hex_decode_check(ref s in "([0-9a-fA-F][0-9a-fA-F])+") {
            _test_hex_decode_check(s, true);
        }
    }

    proptest! {
        #[test]
        fn test_hex_decode_check_odd(ref s in "[0-9a-fA-F]{11}") {
            _test_hex_decode_check(s, false);
        }
    }
}