fedimint_core/
tiered_multi.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
use std::collections::btree_map::Entry;
use std::collections::BTreeMap;
use std::marker::PhantomData;

use fedimint_core::encoding::{Decodable, DecodeError, Encodable};
use serde::{Deserialize, Serialize};

use crate::module::registry::ModuleDecoderRegistry;
use crate::tiered::InvalidAmountTierError;
use crate::{Amount, Tiered};

/// Represents notes of different denominations.
///
/// **Attention:** care has to be taken when constructing this to avoid overflow
/// when calculating the total amount represented. As it is prudent to limit
/// both the maximum note amount and maximum note count per transaction this
/// shouldn't be a problem in practice though.
#[derive(Debug, Clone, Eq, PartialEq, Hash, Deserialize, Serialize)]
pub struct TieredMulti<T>(BTreeMap<Amount, Vec<T>>);

impl<T> TieredMulti<T> {
    /// Returns a new `TieredMulti` with the given `BTreeMap` map
    pub fn new(map: BTreeMap<Amount, Vec<T>>) -> Self {
        TieredMulti(map.into_iter().filter(|(_, v)| !v.is_empty()).collect())
    }

    /// Returns the total value of all notes in msat as `Amount`
    pub fn total_amount(&self) -> Amount {
        let milli_sat = self
            .0
            .iter()
            .map(|(tier, notes)| tier.msats * (notes.len() as u64))
            .sum();
        Amount::from_msats(milli_sat)
    }

    /// Returns the number of items in all vectors
    pub fn count_items(&self) -> usize {
        self.0.values().map(Vec::len).sum()
    }

    /// Returns the number of tiers
    pub fn count_tiers(&self) -> usize {
        self.0.len()
    }

    /// Returns an iterator over the keys
    pub fn iter_tiers(&self) -> impl Iterator<Item = &Amount> {
        self.0.keys()
    }

    /// Returns the summary of number of items in each tier
    pub fn summary(&self) -> TieredCounts {
        TieredCounts(
            self.iter()
                .map(|(amount, values)| (*amount, values.len()))
                .collect(),
        )
    }

    /// Verifies whether all vectors in all tiers are empty
    pub fn is_empty(&self) -> bool {
        self.assert_invariants();
        self.count_items() == 0
    }

    /// Verifies whether the structure of `self` and `other` is identical
    pub fn structural_eq<O>(&self, other: &TieredMulti<O>) -> bool {
        let tier_eq = self.0.keys().eq(other.0.keys());
        let per_tier_eq = self
            .0
            .values()
            .zip(other.0.values())
            .all(|(c1, c2)| c1.len() == c2.len());
        tier_eq && per_tier_eq
    }

    /// Returns an borrowing iterator
    pub fn iter(&self) -> impl Iterator<Item = (&Amount, &Vec<T>)> {
        self.0.iter()
    }

    /// Returns an iterator over every `(Amount, &T)`
    ///
    /// Note: The order of the elements is important:
    /// from the lowest tier to the highest, then in order of elements in the
    /// Vec
    pub fn iter_items(&self) -> impl DoubleEndedIterator<Item = (Amount, &T)> {
        // Note: If you change the method implementation, make sure that the returned
        // order of the elements stays consistent.
        self.0
            .iter()
            .flat_map(|(amt, notes)| notes.iter().map(|c| (*amt, c)))
    }

    /// Returns an consuming iterator over every `(Amount, T)`
    ///
    /// Note: The order of the elements is important:
    /// from the lowest tier to the highest, then in order of elements in the
    /// Vec
    pub fn into_iter_items(self) -> impl DoubleEndedIterator<Item = (Amount, T)> {
        // Note: If you change the method implementation, make sure that the returned
        // order of the elements stays consistent.
        self.0
            .into_iter()
            .flat_map(|(amt, notes)| notes.into_iter().map(move |c| (amt, c)))
    }

    /// Returns the length of the longest vector of all tiers, ignoring the
    /// `except` tier
    pub fn longest_tier_except(&self, except: &Amount) -> usize {
        self.0
            .iter()
            .filter_map(|(amt, notes)| {
                if amt == except {
                    None
                } else {
                    Some(notes.len())
                }
            })
            .max()
            .unwrap_or_default()
    }

    /// Verifies that all keys in `self` are present in the keys of the given
    /// parameter `Tiered`
    pub fn all_tiers_exist_in<K>(&self, keys: &Tiered<K>) -> Result<(), InvalidAmountTierError> {
        self.0
            .keys()
            .find(|&amt| keys.get(*amt).is_none())
            .map_or(Ok(()), |amt| Err(InvalidAmountTierError(*amt)))
    }

    /// Returns an `Option` with a reference to the vector of the given `Amount`
    pub fn get(&self, amt: Amount) -> Option<&Vec<T>> {
        self.assert_invariants();
        self.0.get(&amt)
    }

    pub fn push(&mut self, amt: Amount, val: T) {
        self.0.entry(amt).or_default().push(val);
    }

    fn assert_invariants(&self) {
        // Just for compactness and determinism, we don't want entries with 0 items
        #[cfg(debug_assertions)]
        self.iter().for_each(|(_, v)| debug_assert!(!v.is_empty()));
    }
}

impl<C> FromIterator<(Amount, C)> for TieredMulti<C> {
    fn from_iter<T: IntoIterator<Item = (Amount, C)>>(iter: T) -> Self {
        let mut res = TieredMulti::default();
        res.extend(iter);
        res.assert_invariants();
        res
    }
}

impl<C> IntoIterator for TieredMulti<C>
where
    C: 'static + Send,
{
    type Item = (Amount, C);
    type IntoIter = Box<dyn Iterator<Item = (Amount, C)> + Send>;

    fn into_iter(self) -> Self::IntoIter {
        Box::new(
            self.0
                .into_iter()
                .flat_map(|(amt, notes)| notes.into_iter().map(move |c| (amt, c))),
        )
    }
}

impl<C> Default for TieredMulti<C> {
    fn default() -> Self {
        TieredMulti(BTreeMap::default())
    }
}

impl<C> Extend<(Amount, C)> for TieredMulti<C> {
    fn extend<T: IntoIterator<Item = (Amount, C)>>(&mut self, iter: T) {
        for (amount, note) in iter {
            self.0.entry(amount).or_default().push(note);
        }
    }
}

impl<C> Encodable for TieredMulti<C>
where
    C: Encodable + 'static,
{
    fn consensus_encode<W: std::io::Write>(&self, writer: &mut W) -> Result<usize, std::io::Error> {
        self.0.consensus_encode(writer)
    }
}

impl<C> Decodable for TieredMulti<C>
where
    C: Decodable + 'static,
{
    fn consensus_decode_from_finite_reader<D: std::io::Read>(
        d: &mut D,
        modules: &ModuleDecoderRegistry,
    ) -> Result<Self, DecodeError> {
        Ok(TieredMulti(BTreeMap::consensus_decode_from_finite_reader(
            d, modules,
        )?))
    }
}

pub struct TieredMultiZip<'a, I, T>
where
    I: 'a,
{
    iters: Vec<I>,
    _pd: PhantomData<&'a T>,
}

impl<'a, I, C> TieredMultiZip<'a, I, C> {
    /// Creates a new MultiZip Iterator from `Notes` iterators. These have to be
    /// checked for structural equality! There also has to be at least one
    /// iterator in the `iter` vector.
    pub fn new(iters: Vec<I>) -> Self {
        assert!(!iters.is_empty());

        TieredMultiZip {
            iters,
            _pd: Default::default(),
        }
    }
}

impl<'a, I, C> Iterator for TieredMultiZip<'a, I, C>
where
    I: Iterator<Item = (Amount, C)>,
{
    type Item = (Amount, Vec<C>);

    fn next(&mut self) -> Option<Self::Item> {
        let mut notes = Vec::with_capacity(self.iters.len());
        let mut amount = None;
        for iter in &mut self.iters {
            match iter.next() {
                Some((amt, note)) => {
                    if let Some(amount) = amount {
                        // This may fail if notes weren't tested for structural equality
                        assert_eq!(amount, amt);
                    } else {
                        amount = Some(amt);
                    }
                    notes.push(note);
                }
                None => return None,
            }
        }

        // This should always hold as long as this impl is correct
        assert_eq!(notes.len(), self.iters.len());

        Some((
            amount.expect("The multi zip must contain at least one iterator"),
            notes,
        ))
    }
}

#[derive(Debug, PartialEq, Eq, Default, Serialize, Deserialize, Clone)]
pub struct TieredCounts(Tiered<usize>);

impl TieredCounts {
    pub fn inc(&mut self, tier: Amount, n: usize) {
        if 0 < n {
            *self.0.get_mut_or_default(tier) += n;
        }
    }

    pub fn dec(&mut self, tier: Amount) {
        match self.0.entry(tier) {
            Entry::Vacant(_) => panic!("Trying to decrement an empty tier"),
            Entry::Occupied(mut c) => {
                assert!(*c.get() != 0);
                if *c.get() == 1 {
                    c.remove_entry();
                } else {
                    *c.get_mut() -= 1;
                }
            }
        }
        self.assert_invariants();
    }

    pub fn iter(&self) -> impl Iterator<Item = (Amount, usize)> + '_ {
        self.0.iter().map(|(k, v)| (k, *v))
    }

    pub fn total_amount(&self) -> Amount {
        self.0.iter().map(|(k, v)| k * (*v as u64)).sum::<Amount>()
    }

    pub fn count_items(&self) -> usize {
        self.0.iter().map(|(_, v)| *v).sum()
    }

    pub fn count_tiers(&self) -> usize {
        self.0.count_tiers()
    }

    pub fn is_empty(&self) -> bool {
        self.count_items() == 0
    }

    pub fn get(&self, tier: Amount) -> usize {
        self.assert_invariants();
        self.0.get(tier).copied().unwrap_or_default()
    }

    fn assert_invariants(&self) {
        // Just for compactness and determinism, we don't want entries with 0 count
        #[cfg(debug_assertions)]
        self.iter().for_each(|(_, count)| debug_assert!(0 < count));
    }
}

impl FromIterator<(Amount, usize)> for TieredCounts {
    fn from_iter<I: IntoIterator<Item = (Amount, usize)>>(iter: I) -> Self {
        TieredCounts(iter.into_iter().filter(|(_, count)| *count != 0).collect())
    }
}

#[cfg(test)]
mod test {

    use super::*;

    #[test]
    fn summary_works() {
        let notes = TieredMulti::from_iter(vec![
            (Amount::from_sats(1), ()),
            (Amount::from_sats(2), ()),
            (Amount::from_sats(3), ()),
            (Amount::from_sats(3), ()),
            (Amount::from_sats(2), ()),
            (Amount::from_sats(2), ()),
        ]);
        let summary = notes.summary();
        assert_eq!(
            summary.iter().collect::<Vec<_>>(),
            vec![
                (Amount::from_sats(1), 1),
                (Amount::from_sats(2), 3),
                (Amount::from_sats(3), 2),
            ]
        );
        assert_eq!(summary.total_amount(), notes.total_amount());
        assert_eq!(summary.count_items(), notes.count_items());
        assert_eq!(summary.count_tiers(), notes.count_tiers());
    }
}