1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
use std::collections::BTreeMap;
use std::io::Write;

use aleph_bft::Keychain as KeychainTrait;
use fedimint_core::session_outcome::{consensus_hash_sha256, SchnorrSignature};
use fedimint_core::{BitcoinHash, NumPeersExt, PeerId};
use secp256k1_zkp::hashes::sha256;
use secp256k1_zkp::{schnorr, All, KeyPair, Message, PublicKey, Secp256k1, SecretKey};

#[derive(Clone, Debug)]
pub struct Keychain {
    peer_id: PeerId,
    public_keys: BTreeMap<PeerId, secp256k1_zkp::PublicKey>,
    keypair: KeyPair,
    secp: Secp256k1<All>,
}

impl Keychain {
    pub fn new(
        peer_id: PeerId,
        public_keys: BTreeMap<PeerId, PublicKey>,
        secret_key: SecretKey,
    ) -> Self {
        let secp = Secp256k1::new();
        let keypair = secret_key.keypair(&secp);

        Keychain {
            peer_id,
            public_keys,
            keypair,
            secp,
        }
    }

    pub fn peer_id(&self) -> PeerId {
        self.peer_id
    }

    pub fn peer_count(&self) -> usize {
        self.public_keys.total()
    }

    pub fn threshold(&self) -> usize {
        self.public_keys.threshold()
    }

    fn tagged_hash(&self, message: &[u8]) -> Message {
        let public_key_tag = consensus_hash_sha256(&self.public_keys);
        let mut engine = sha256::HashEngine::default();

        engine
            .write_all(public_key_tag.as_ref())
            .expect("Writing to a hash engine can not fail");

        engine
            .write_all(message)
            .expect("Writing to a hash engine can not fail");

        let hash = sha256::Hash::from_engine(engine);

        Message::from(hash)
    }
}

impl aleph_bft::Index for Keychain {
    fn index(&self) -> aleph_bft::NodeIndex {
        self.peer_id.to_usize().into()
    }
}

#[async_trait::async_trait]
impl aleph_bft::Keychain for Keychain {
    type Signature = SchnorrSignature;

    fn node_count(&self) -> aleph_bft::NodeCount {
        self.peer_count().into()
    }

    fn sign(&self, message: &[u8]) -> Self::Signature {
        SchnorrSignature(
            self.secp
                .sign_schnorr(&self.tagged_hash(message), &self.keypair)
                .as_ref()
                .to_owned(),
        )
    }

    fn verify(
        &self,
        message: &[u8],
        signature: &Self::Signature,
        node_index: aleph_bft::NodeIndex,
    ) -> bool {
        let peer_id = super::to_peer_id(node_index);

        if let Some(public_key) = self.public_keys.get(&peer_id) {
            if let Ok(sig) = schnorr::Signature::from_slice(&signature.0) {
                return self
                    .secp
                    .verify_schnorr(
                        &sig,
                        &self.tagged_hash(message),
                        &public_key.x_only_public_key().0,
                    )
                    .is_ok();
            }
        }

        false
    }
}

impl aleph_bft::MultiKeychain for Keychain {
    type PartialMultisignature = aleph_bft::NodeMap<SchnorrSignature>;

    fn bootstrap_multi(
        &self,
        signature: &Self::Signature,
        index: aleph_bft::NodeIndex,
    ) -> Self::PartialMultisignature {
        let mut partial = aleph_bft::NodeMap::with_size(self.peer_count().into());
        partial.insert(index, signature.clone());
        partial
    }

    fn is_complete(&self, msg: &[u8], partial: &Self::PartialMultisignature) -> bool {
        if partial.iter().count() < self.threshold() {
            return false;
        }

        partial.iter().all(|(i, sgn)| self.verify(msg, sgn, i))
    }
}