Expand description

Autogenerated: ‘src/ExtractionOCaml/word_by_word_montgomery’ –lang Rust –inline p384_scalar 32 ‘2^384 - 1388124618062372383947042015309946732620727252194336364173’ mul square add sub opp from_montgomery to_montgomery nonzero selectznz to_bytes from_bytes one msat divstep divstep_precomp curve description: p384_scalar machine_wordsize = 32 (from “32”) requested operations: mul, square, add, sub, opp, from_montgomery, to_montgomery, nonzero, selectznz, to_bytes, from_bytes, one, msat, divstep, divstep_precomp m = 0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973 (from “2^384 - 1388124618062372383947042015309946732620727252194336364173”)

NOTE: In addition to the bounds specified above each function, all functions synthesized for this Montgomery arithmetic require the input to be strictly less than the prime modulus (m), and also require the input to be in the unique saturated representation. All functions also ensure that these two properties are true of return values.

Computed values: eval z = z[0] + (z[1] << 32) + (z[2] << 64) + (z[3] << 96) + (z[4] << 128) + (z[5] << 160) + (z[6] << 192) + (z[7] << 224) + (z[8] << 256) + (z[9] << 0x120) + (z[10] << 0x140) + (z[11] << 0x160) bytes_eval z = z[0] + (z[1] << 8) + (z[2] << 16) + (z[3] << 24) + (z[4] << 32) + (z[5] << 40) + (z[6] << 48) + (z[7] << 56) + (z[8] << 64) + (z[9] << 72) + (z[10] << 80) + (z[11] << 88) + (z[12] << 96) + (z[13] << 104) + (z[14] << 112) + (z[15] << 120) + (z[16] << 128) + (z[17] << 136) + (z[18] << 144) + (z[19] << 152) + (z[20] << 160) + (z[21] << 168) + (z[22] << 176) + (z[23] << 184) + (z[24] << 192) + (z[25] << 200) + (z[26] << 208) + (z[27] << 216) + (z[28] << 224) + (z[29] << 232) + (z[30] << 240) + (z[31] << 248) + (z[32] << 256) + (z[33] << 0x108) + (z[34] << 0x110) + (z[35] << 0x118) + (z[36] << 0x120) + (z[37] << 0x128) + (z[38] << 0x130) + (z[39] << 0x138) + (z[40] << 0x140) + (z[41] << 0x148) + (z[42] << 0x150) + (z[43] << 0x158) + (z[44] << 0x160) + (z[45] << 0x168) + (z[46] << 0x170) + (z[47] << 0x178) twos_complement_eval z = let x1 := z[0] + (z[1] << 32) + (z[2] << 64) + (z[3] << 96) + (z[4] << 128) + (z[5] << 160) + (z[6] << 192) + (z[7] << 224) + (z[8] << 256) + (z[9] << 0x120) + (z[10] << 0x140) + (z[11] << 0x160) in if x1 & (2^384-1) < 2^383 then x1 & (2^384-1) else (x1 & (2^384-1)) - 2^384

Functions

Type Definitions